Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2-: EPR SPIN trapping studies - PubMed (original) (raw)
. 2005 Dec 9;280(49):40684-98.
doi: 10.1074/jbc.M504503200. Epub 2005 Sep 21.
Affiliations
- PMID: 16176930
- DOI: 10.1074/jbc.M504503200
Free article
Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thiyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2-: EPR SPIN trapping studies
Hao Zhang et al. J Biol Chem. 2005.
Free article
Abstract
We investigated the effects of a cysteine residue on tyrosine nitration in several model peptides treated with myeloperoxidase (MPO), H(2)O(2), and nitrite anion (NO(2)(-)) and with horseradish peroxidase and H(2)O(2). Sequences of model peptides were acetyl-Tyr-Cys-amide (YC), acetyl-Tyr-Ala-Cys-amide (YAC), acetyl-Tyr-Ala-Ala-Cys-amide (YAAC), and acetyl-Tyr-Ala-Ala-Ala-Ala-Cys-amide (YAAAAC). Results indicate that nitration and oxidation products of tyrosyl residue in YC and other model peptides were barely detectable. A major product detected was the corresponding disulfide (e.g. YCysCysY). Spin trapping experiments with 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) revealed thiyl adduct (e.g. DMPO-SCys-Tyr) formation from peptides (e.g. YC) treated with MPO/H(2)O(2) and MPO/H(2)O(2)/NO(2)(-). The steady-state concentrations of DMPO-thiyl adducts decreased with increasing chain length of model peptides. Blocking the sulfydryl group in YC with methylmethanethiosulfonate (that formed YCSSCH(3)) totally inhibited thiyl radical formation as did substitution of Tyr with Phe (i.e. FC) in the presence of MPO/H(2)O(2)/NO(2)(-). However, increased tyrosine nitration, tyrosine dimerization, and tyrosyl radical formation were detected in the MPO/H(2)O(2)/NO(2)(-)/YCSSCH(3) system. Increased formation of S-nitrosated YC (YCysNO) was detected in the MPO/H(2)O(2)/(*)NO system. We conclude that a rapid intramolecular electron transfer reaction between the tyrosyl radical and the Cys residue impedes tyrosine nitration and induces corresponding thiyl radical and nitrosocysteine product. Implications of this novel intramolecular electron transfer mechanism in protein nitration and nitrosation are discussed.
Similar articles
- Influence of intramolecular electron transfer mechanism in biological nitration, nitrosation, and oxidation of redox-sensitive amino acids.
Zhang H, Xu Y, Joseph J, Kalyanaraman B. Zhang H, et al. Methods Enzymol. 2008;440:65-94. doi: 10.1016/S0076-6879(07)00804-X. Methods Enzymol. 2008. PMID: 18423211 Review. - The effect of neighboring methionine residue on tyrosine nitration and oxidation in peptides treated with MPO, H2O2, and NO2(-) or peroxynitrite and bicarbonate: role of intramolecular electron transfer mechanism?
Zhang H, Zielonka J, Sikora A, Joseph J, Xu Y, Kalyanaraman B. Zhang H, et al. Arch Biochem Biophys. 2009 Apr 15;484(2):134-45. doi: 10.1016/j.abb.2008.11.018. Epub 2008 Nov 24. Arch Biochem Biophys. 2009. PMID: 19056332 Free PMC article. - Reaction of human myoglobin and H2O2. Electron transfer between tyrosine 103 phenoxyl radical and cysteine 110 yields a protein-thiyl radical.
Witting PK, Mauk AG. Witting PK, et al. J Biol Chem. 2001 May 11;276(19):16540-7. doi: 10.1074/jbc.M011707200. Epub 2001 Feb 13. J Biol Chem. 2001. PMID: 11278969 - Reaction of human myoglobin and H2O2. Involvement of a thiyl radical produced at cysteine 110.
Witting PK, Douglas DJ, Mauk AG. Witting PK, et al. J Biol Chem. 2000 Jul 7;275(27):20391-8. doi: 10.1074/jbc.M000373200. J Biol Chem. 2000. PMID: 10779502 - Nitric oxide trapping of the tyrosyl radical-chemistry and biochemistry.
Gunther MR, Sturgeon BE, Mason RP. Gunther MR, et al. Toxicology. 2002 Aug 1;177(1):1-9. doi: 10.1016/s0300-483x(02)00191-9. Toxicology. 2002. PMID: 12126791 Review.
Cited by
- S-nitrosoglutathione.
Broniowska KA, Diers AR, Hogg N. Broniowska KA, et al. Biochim Biophys Acta. 2013 May;1830(5):3173-81. doi: 10.1016/j.bbagen.2013.02.004. Epub 2013 Feb 14. Biochim Biophys Acta. 2013. PMID: 23416062 Free PMC article. Review. - Role of Myeloperoxidase, Oxidative Stress, and Inflammation in Bronchopulmonary Dysplasia.
Wu TJ, Jing X, Teng M, Pritchard KA Jr, Day BW, Naylor S, Teng RJ. Wu TJ, et al. Antioxidants (Basel). 2024 Jul 23;13(8):889. doi: 10.3390/antiox13080889. Antioxidants (Basel). 2024. PMID: 39199135 Free PMC article. Review. - Recycling of the high valence States of heme proteins by cysteine residues of THIMET-oligopeptidase.
Ferreira JC, Icimoto MY, Marcondes MF, Oliveira V, Nascimento OR, Nantes IL. Ferreira JC, et al. PLoS One. 2013 Nov 1;8(11):e79102. doi: 10.1371/journal.pone.0079102. eCollection 2013. PLoS One. 2013. PMID: 24223886 Free PMC article. - Thiol redox biochemistry: insights from computer simulations.
Zeida A, Guardia CM, Lichtig P, Perissinotti LL, Defelipe LA, Turjanski A, Radi R, Trujillo M, Estrin DA. Zeida A, et al. Biophys Rev. 2014 Mar;6(1):27-46. doi: 10.1007/s12551-013-0127-x. Epub 2014 Jan 9. Biophys Rev. 2014. PMID: 28509962 Free PMC article. Review. - The chemical biology of S-nitrosothiols.
Broniowska KA, Hogg N. Broniowska KA, et al. Antioxid Redox Signal. 2012 Oct 1;17(7):969-80. doi: 10.1089/ars.2012.4590. Epub 2012 Jun 7. Antioxid Redox Signal. 2012. PMID: 22468855 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous