Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach - PubMed (original) (raw)
. 2005 Dec;295(8):547-65.
doi: 10.1016/j.ijmm.2005.08.002. Epub 2005 Oct 25.
Affiliations
- PMID: 16325551
- DOI: 10.1016/j.ijmm.2005.08.002
Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach
Christian Kohler et al. Int J Med Microbiol. 2005 Dec.
Abstract
Staphylococcus aureus is a versatile human pathogen causing a wide variety of diseases ranging from wound infection to endocarditis, osteomyelitis, and sepsis. In order to investigate this pathogen, we sought to analyze the cytoplasmic proteome of S. aureus COL by using two different approaches: two-dimensional (2D) gel analyses combined with matrix-assisted laser ionization-time of flight mass spectrometry and a gel-free system using multidimensional liquid chromatography followed by mass spectrometry. By combining both analyses we identified 1123 cytoplasmic proteins that represent two-thirds of the cytoplasmic proteome of the organism. With our standard 2D gel setup (pI 4-7) we identified 473 proteins that cover about 40% of the cytoplasmic proteome predicted for this proteomic window. The identified proteins belong to a variety of cellular functions ranging from the transcriptional and translational machinery, tricarboxylic acid cycle (TCC), glycolysis, and fermentation pathways to biosynthetic pathways of nucleotides, fatty acids, and cell wall components. While most of the metabolic pathways predicted for S. aureus were covered by this gel-based proteomics 650 additional proteins were identified by the gel-free approach, among them alkaline or hydrophobic proteins. In our work, we established a master 2D gel that enabled us to study the regulation of core carbon metabolism in S. aureus cells grown in a complex medium. Our comparison of the protein pattern of exponentially growing cells with that of stationary-phase cells revealed a higher amount of enzymes involved in protein synthesis, transcription, and glycolysis in exponentially growing cells. In contrast, enzymes of the TCC and gluconeogenesis are increased at the stationary phase. With this comprehensive proteome map we have an essential tool for a better understanding of cell physiology of the human pathogen, S. aureus.
Similar articles
- Proteomic analysis to investigate regulatory networks in Staphylococcus aureus.
Engelmann S, Hecker M. Engelmann S, et al. Methods Mol Biol. 2008;431:25-45. doi: 10.1007/978-1-60327-032-8_3. Methods Mol Biol. 2008. PMID: 18287745 - Proteome profile of zebrafish Danio rerio olfactory bulb based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization MS/MS analysis.
Singh SK, Saxena S, Meena Lakshmi MG, Saxena P, Idris MM. Singh SK, et al. Zebrafish. 2011 Dec;8(4):183-9. doi: 10.1089/zeb.2011.0711. Zebrafish. 2011. PMID: 22181661 - Oxidative stress triggers thiol oxidation in the glyceraldehyde-3-phosphate dehydrogenase of Staphylococcus aureus.
Weber H, Engelmann S, Becher D, Hecker M. Weber H, et al. Mol Microbiol. 2004 Apr;52(1):133-40. doi: 10.1111/j.1365-2958.2004.03971.x. Mol Microbiol. 2004. PMID: 15049816 - A proteomic view of cell physiology and virulence of Staphylococcus aureus.
Hecker M, Becher D, Fuchs S, Engelmann S. Hecker M, et al. Int J Med Microbiol. 2010 Feb;300(2-3):76-87. doi: 10.1016/j.ijmm.2009.10.006. Epub 2009 Dec 11. Int J Med Microbiol. 2010. PMID: 20005169 Review. - The Staphylococcus aureus proteome.
Otto A, van Dijl JM, Hecker M, Becher D. Otto A, et al. Int J Med Microbiol. 2014 Mar;304(2):110-20. doi: 10.1016/j.ijmm.2013.11.007. Epub 2013 Dec 1. Int J Med Microbiol. 2014. PMID: 24439828 Review.
Cited by
- Exoproteome of Staphylococcus aureus reveals putative determinants of nasal carriage.
Muthukrishnan G, Quinn GA, Lamers RP, Diaz C, Cole AL, Chen S, Cole AM. Muthukrishnan G, et al. J Proteome Res. 2011 Apr 1;10(4):2064-78. doi: 10.1021/pr200029r. Epub 2011 Mar 7. J Proteome Res. 2011. PMID: 21338050 Free PMC article. - Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin.
Cirz RT, Jones MB, Gingles NA, Minogue TD, Jarrahi B, Peterson SN, Romesberg FE. Cirz RT, et al. J Bacteriol. 2007 Jan;189(2):531-9. doi: 10.1128/JB.01464-06. Epub 2006 Nov 3. J Bacteriol. 2007. PMID: 17085555 Free PMC article. - Transcriptomic and metabolic responses of Staphylococcus aureus exposed to supra-physiological temperatures.
Fleury B, Kelley WL, Lew D, Götz F, Proctor RA, Vaudaux P. Fleury B, et al. BMC Microbiol. 2009 Apr 22;9:76. doi: 10.1186/1471-2180-9-76. BMC Microbiol. 2009. PMID: 19386094 Free PMC article. - Aureolib - a proteome signature library: towards an understanding of staphylococcus aureus pathophysiology.
Fuchs S, Zühlke D, Pané-Farré J, Kusch H, Wolf C, Reiß S, Binh le TN, Albrecht D, Riedel K, Hecker M, Engelmann S. Fuchs S, et al. PLoS One. 2013 Aug 13;8(8):e70669. doi: 10.1371/journal.pone.0070669. eCollection 2013. PLoS One. 2013. PMID: 23967085 Free PMC article. - Complementary analysis of the vegetative membrane proteome of the human pathogen Staphylococcus aureus.
Wolff S, Hahne H, Hecker M, Becher D. Wolff S, et al. Mol Cell Proteomics. 2008 Aug;7(8):1460-8. doi: 10.1074/mcp.M700554-MCP200. Epub 2008 May 6. Mol Cell Proteomics. 2008. PMID: 18460691 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous