Palmitoylation of ligands, receptors, and intracellular signaling molecules - PubMed (original) (raw)
Review
. 2006 Oct 31;2006(359):re14.
doi: 10.1126/stke.3592006re14.
Affiliations
- PMID: 17077383
- DOI: 10.1126/stke.3592006re14
Review
Palmitoylation of ligands, receptors, and intracellular signaling molecules
Marilyn D Resh. Sci STKE. 2006.
Abstract
Palmitate, a 16-carbon saturated fatty acid, is attached to more than 100 proteins. Modification of proteins by palmitate has pleiotropic effects on protein function. Palmitoylation can influence membrane binding and membrane targeting of the modified proteins. In particular, many palmitoylated proteins concentrate in lipid rafts, and enrichment in rafts is required for efficient signal transduction. This Review focuses on the multiple effects of palmitoylation on the localization and function of ligands, receptors, and intracellular signaling proteins. Palmitoylation regulates the trafficking and function of transmembrane proteins such as ion channels, neurotransmitter receptors, heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors, and integrins. In addition, immune receptor signaling relies on protein palmitoylation at many levels, including palmitoylated co-receptors, Src family kinases, and adaptor or scaffolding proteins. The localization and signaling capacities of Ras and G proteins are modulated by dynamic protein palmitoylation. Cycles of palmitoylation and depalmitoylation allow H-Ras and G protein alpha subunits to reversibly bind to and signal from different intracellular cell membranes. Moreover, secreted ligands such as Hedgehog, Wingless, and Spitz use palmitoylation to regulate the extent of long- or short-range signaling. Finally, palmitoylation can alter signaling protein function by direct effects on enzymatic activity and substrate specificity. The identification of the palmitoyl acyltransferases has provided new insights into the biochemistry of this posttranslational process and permitted new substrates to be identified.
Similar articles
- Ethanol inhibits palmitoylation of G protein G alpha(s).
Hallak H, Rubin R. Hallak H, et al. J Neurochem. 2004 May;89(4):919-27. doi: 10.1046/j.1471-4159.2004.02364.x. J Neurochem. 2004. PMID: 15140191 - Protein acylation and localization in T cell signaling (Review).
Bijlmakers MJ. Bijlmakers MJ. Mol Membr Biol. 2009 Jan;26(1):93-103. doi: 10.1080/09687680802650481. Epub 2008 Dec 29. Mol Membr Biol. 2009. PMID: 19115146 Review. - Palmitoylation cycles and regulation of protein function (Review).
Baekkeskov S, Kanaani J. Baekkeskov S, et al. Mol Membr Biol. 2009 Jan;26(1):42-54. doi: 10.1080/09687680802680108. Epub 2009 Jan 30. Mol Membr Biol. 2009. PMID: 19169934 Review. - Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites.
Hayashi T, Rumbaugh G, Huganir RL. Hayashi T, et al. Neuron. 2005 Sep 1;47(5):709-23. doi: 10.1016/j.neuron.2005.06.035. Neuron. 2005. PMID: 16129400 - Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins.
Huang K, Yanai A, Kang R, Arstikaitis P, Singaraja RR, Metzler M, Mullard A, Haigh B, Gauthier-Campbell C, Gutekunst CA, Hayden MR, El-Husseini A. Huang K, et al. Neuron. 2004 Dec 16;44(6):977-86. doi: 10.1016/j.neuron.2004.11.027. Neuron. 2004. PMID: 15603740
Cited by
- LST1/A is a myeloid leukocyte-specific transmembrane adaptor protein recruiting protein tyrosine phosphatases SHP-1 and SHP-2 to the plasma membrane.
Draber P, Stepanek O, Hrdinka M, Drobek A, Chmatal L, Mala L, Ormsby T, Angelisova P, Horejsi V, Brdicka T. Draber P, et al. J Biol Chem. 2012 Jun 29;287(27):22812-21. doi: 10.1074/jbc.M112.339143. Epub 2012 May 15. J Biol Chem. 2012. PMID: 22589543 Free PMC article. - Palmitoylation influences the function and pharmacology of sodium channels.
Bosmans F, Milescu M, Swartz KJ. Bosmans F, et al. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20213-8. doi: 10.1073/pnas.1108497108. Epub 2011 Nov 28. Proc Natl Acad Sci U S A. 2011. PMID: 22123950 Free PMC article. - Emerging mechanisms of glutathione-dependent chemistry in biology and disease.
Janssen-Heininger YM, Nolin JD, Hoffman SM, van der Velden JL, Tully JE, Lahue KG, Abdalla ST, Chapman DG, Reynaert NL, van der Vliet A, Anathy V. Janssen-Heininger YM, et al. J Cell Biochem. 2013 Sep;114(9):1962-8. doi: 10.1002/jcb.24551. J Cell Biochem. 2013. PMID: 23554102 Free PMC article. Review. - Linker for activation of T-cell family member2 (LAT2) a lipid raft adaptor protein for AKT signaling, is an early mediator of alkylphospholipid anti-leukemic activity.
Thomé CH, dos Santos GA, Ferreira GA, Scheucher PS, Izumi C, Leopoldino AM, Simão AM, Ciancaglini P, de Oliveira KT, Chin A, Hanash SM, Falcão RP, Rego EM, Greene LJ, Faça VM. Thomé CH, et al. Mol Cell Proteomics. 2012 Dec;11(12):1898-912. doi: 10.1074/mcp.M112.019661. Epub 2012 Sep 22. Mol Cell Proteomics. 2012. PMID: 23001822 Free PMC article. - Human intestinal acyl-CoA synthetase 5 is sensitive to the inhibitor triacsin C.
Kaemmerer E, Peuscher A, Reinartz A, Liedtke C, Weiskirchen R, Kopitz J, Gassler N. Kaemmerer E, et al. World J Gastroenterol. 2011 Nov 28;17(44):4883-9. doi: 10.3748/wjg.v17.i44.4883. World J Gastroenterol. 2011. PMID: 22171129 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Research Materials
Miscellaneous