New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter - PubMed (original) (raw)
Review
doi: 10.1159/000107069. Epub 2007 Aug 7.
Affiliations
- PMID: 17687185
- DOI: 10.1159/000107069
Review
New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter
Ken-ichi Miyamoto et al. Am J Nephrol. 2007.
Abstract
Abnormalities of the inorganic phosphate (Pi) reabsorption in the kidney result in various metabolic disorders. Na+-dependent Pi (Na/Pi) transporters in the brush border membrane of proximal tubular cells mediate the rate-limiting step in the overall Pi-reabsorptive process. Type IIa and type IIc Na/Pi cotransporters are expressed in the apical membrane of proximal tubular cells and mediate Na/Pi cotransport; the extent of Pi reabsorption in the proximal tubules is determined largely by the abundance of the type IIa Na/Pi cotransporter. However, several studies suggest that the type IIc cotransporter in Pi reabsorption may also play a role in this process. For example, mutation of the type IIc Na/Pi cotransporter gene results in hereditary hypophosphatemic rickets with hypercalciuria, suggesting that the type IIc transporter plays an important role in renal Pi reabsorption in humans and may be a key determinant of the plasma Pi concentration. The type IIc Na/Pi transporter is regulated by parathyroid hormone, dietary Pi, and fibroblast growth factor 23, and studies suggest a differential regulation of the IIa and IIc transporters. Indeed, differences in temporal and/or spatial expression of the type IIa and type IIc Na/Pi transporters may be required for normal phosphate homeostasis and bone development. This review will briefly summarize the regulation of renal Pi transporters in various Pi-wasting disorders and highlight the role of a relatively new member of the Na/Pi cotransporter family: the type IIc Na/Pi transporter/SLC34A3.
2007 S. Karger AG, Basel
Similar articles
- Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet.
Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto K. Segawa H, et al. Am J Physiol Renal Physiol. 2005 Mar;288(3):F587-96. doi: 10.1152/ajprenal.00097.2004. Epub 2004 Nov 23. Am J Physiol Renal Physiol. 2005. PMID: 15561978 - The roles of Na/Pi-II transporters in phosphate metabolism.
Segawa H, Aranami F, Kaneko I, Tomoe Y, Miyamoto K. Segawa H, et al. Bone. 2009 Jul;45 Suppl 1:S2-7. doi: 10.1016/j.bone.2009.02.003. Epub 2009 Feb 13. Bone. 2009. PMID: 19232403 Review. - Magnesium stimulates renal phosphate reabsorption.
Thumfart J, Jung S, Amasheh S, Krämer S, Peters H, Sommer K, Biber J, Murer H, Meij I, Querfeld U, Wagner CA, Müller D. Thumfart J, et al. Am J Physiol Renal Physiol. 2008 Oct;295(4):F1126-33. doi: 10.1152/ajprenal.00353.2007. Epub 2008 Aug 13. Am J Physiol Renal Physiol. 2008. PMID: 18701629 - Cellular/molecular control of renal Na/Pi-cotransport.
Murer H, Forster I, Hilfiker H, Pfister M, Kaissling B, Lötscher M, Biber J. Murer H, et al. Kidney Int Suppl. 1998 Apr;65:S2-10. Kidney Int Suppl. 1998. PMID: 9551425 Review. - Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders.
Tenenhouse HS, Sabbagh Y. Tenenhouse HS, et al. Pflugers Arch. 2002 Jun;444(3):317-26. doi: 10.1007/s00424-002-0839-4. Epub 2002 Apr 23. Pflugers Arch. 2002. PMID: 12111239 Review.
Cited by
- FGF23 associated bone diseases.
Liao E. Liao E. Front Med. 2013 Mar;7(1):65-80. doi: 10.1007/s11684-013-0254-6. Epub 2013 Mar 9. Front Med. 2013. PMID: 23471660 Review. - DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE.
Lacruz RS, Habelitz S, Wright JT, Paine ML. Lacruz RS, et al. Physiol Rev. 2017 Jul 1;97(3):939-993. doi: 10.1152/physrev.00030.2016. Physiol Rev. 2017. PMID: 28468833 Free PMC article. Review. - Phosphate sensing.
Bergwitz C, Jüppner H. Bergwitz C, et al. Adv Chronic Kidney Dis. 2011 Mar;18(2):132-44. doi: 10.1053/j.ackd.2011.01.004. Adv Chronic Kidney Dis. 2011. PMID: 21406298 Free PMC article. Review. - The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi.
Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC. Villa-Bellosta R, et al. Am J Physiol Renal Physiol. 2009 Apr;296(4):F691-9. doi: 10.1152/ajprenal.90623.2008. Epub 2008 Dec 10. Am J Physiol Renal Physiol. 2009. PMID: 19073637 Free PMC article. - FGF23 and Phosphate Wasting Disorders.
Huang X, Jiang Y, Xia W. Huang X, et al. Bone Res. 2013 Jun 28;1(2):120-32. doi: 10.4248/BR201302002. eCollection 2013 Jun. Bone Res. 2013. PMID: 26273497 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous