DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS - PubMed (original) (raw)
doi: 10.1038/nsmb.1833. Epub 2010 May 30.
Affiliations
- PMID: 20512148
- DOI: 10.1038/nsmb.1833
DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS
Matthias Lauth et al. Nat Struct Mol Biol. 2010 Jun.
Abstract
Synergism between the RAS and Hedgehog (HH) pathways has been suggested for carcinogenesis in the pancreas, lung and colon. We investigated the molecular cross-talk between RAS and HH signaling and found that, although mutant RAS induces or enhances SHH expression and favors paracrine HH signaling, it antagonizes autocrine HH signal transduction. Activated RAS can be found in primary cilia, the central organelle of HH signal transduction, but functions in a cilium-independent manner and interferes with Gli2 function and Gli3 processing. In addition, the cell-autonomous negative regulation of HH signal transduction involves the RAS effector molecule dual specificity tyrosine phosphorylated and regulated kinase 1B (DYRK1B). In line with a redirection of autocrine toward paracrine HH signaling by a KRAS-DYRK1B network, we find high levels of GLI1 expression restricted to the stromal compartment and not to SHH-expressing tumor cells in human pancreatic adenocarcinoma.
Similar articles
- Positive regulation of Hedgehog signaling via phosphorylation of GLI2/GLI3 by DYRK2 kinase.
Yoshida S, Kawamura A, Aoki K, Wiriyasermkul P, Sugimoto S, Tomiyoshi J, Tajima A, Ishida Y, Katoh Y, Tsukada T, Tsuneoka Y, Yamada K, Nagamori S, Nakayama K, Yoshida K. Yoshida S, et al. Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2320070121. doi: 10.1073/pnas.2320070121. Epub 2024 Jul 5. Proc Natl Acad Sci U S A. 2024. PMID: 38968120 Free PMC article. - DYRK1B as therapeutic target in Hedgehog/GLI-dependent cancer cells with Smoothened inhibitor resistance.
Gruber W, Hutzinger M, Elmer DP, Parigger T, Sternberg C, Cegielkowski L, Zaja M, Leban J, Michel S, Hamm S, Vitt D, Aberger F. Gruber W, et al. Oncotarget. 2016 Feb 9;7(6):7134-48. doi: 10.18632/oncotarget.6910. Oncotarget. 2016. PMID: 26784250 Free PMC article. - The GLI genes as the molecular switch in disrupting Hedgehog signaling in colon cancer.
Mazumdar T, DeVecchio J, Agyeman A, Shi T, Houghton JA. Mazumdar T, et al. Oncotarget. 2011 Aug;2(8):638-45. doi: 10.18632/oncotarget.310. Oncotarget. 2011. PMID: 21860067 Free PMC article. - Developmental and regenerative paradigms of cilia regulated hedgehog signaling.
Kopinke D, Norris AM, Mukhopadhyay S. Kopinke D, et al. Semin Cell Dev Biol. 2021 Feb;110:89-103. doi: 10.1016/j.semcdb.2020.05.029. Epub 2020 Jun 12. Semin Cell Dev Biol. 2021. PMID: 32540122 Free PMC article. Review. - Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators.
Wang Y, Kaiser CE, Frett B, Li HY. Wang Y, et al. J Med Chem. 2013 Jul 11;56(13):5219-30. doi: 10.1021/jm3017706. Epub 2013 Apr 23. J Med Chem. 2013. PMID: 23566315 Free PMC article. Review.
Cited by
- Non-canonical Hedgehog Signaling Pathway in Cancer: Activation of GLI Transcription Factors Beyond Smoothened.
Pietrobono S, Gagliardi S, Stecca B. Pietrobono S, et al. Front Genet. 2019 Jun 12;10:556. doi: 10.3389/fgene.2019.00556. eCollection 2019. Front Genet. 2019. PMID: 31244888 Free PMC article. Review. - Shh-mediated degradation of Hhip allows cell autonomous and non-cell autonomous Shh signalling.
Kwong L, Bijlsma MF, Roelink H. Kwong L, et al. Nat Commun. 2014 Sep 12;5:4849. doi: 10.1038/ncomms5849. Nat Commun. 2014. PMID: 25215859 Free PMC article. - DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling through activation of the mTOR/AKT pathway.
Singh R, Dhanyamraju PK, Lauth M. Singh R, et al. Oncotarget. 2017 Jan 3;8(1):833-845. doi: 10.18632/oncotarget.13662. Oncotarget. 2017. PMID: 27903983 Free PMC article. - Identification of harmine and β-carboline analogs from a high-throughput screen of an approved drug collection; profiling as differential inhibitors of DYRK1A and monoamine oxidase A and for in vitro and in vivo anti-cancer studies.
Tarpley M, Oladapo HO, Strepay D, Caligan TB, Chdid L, Shehata H, Roques JR, Thomas R, Laudeman CP, Onyenwoke RU, Darr DB, Williams KP. Tarpley M, et al. Eur J Pharm Sci. 2021 Jul 1;162:105821. doi: 10.1016/j.ejps.2021.105821. Epub 2021 Mar 27. Eur J Pharm Sci. 2021. PMID: 33781856 Free PMC article. - SOX9 inhibits β-TrCP-mediated protein degradation to promote nuclear GLI1 expression and cancer stem cell properties.
Deng W, Vanderbilt DB, Lin CC, Martin KH, Brundage KM, Ruppert JM. Deng W, et al. J Cell Sci. 2015 Mar 15;128(6):1123-38. doi: 10.1242/jcs.162164. Epub 2015 Jan 27. J Cell Sci. 2015. PMID: 25632159 Free PMC article.
References
- Cell. 2008 May 2;133(3):537-48 - PubMed
- Cancer Res. 2004 May 1;64(9):3052-9 - PubMed
- Nat Rev Cancer. 2003 Jun;3(6):459-65 - PubMed
- Dev Cell. 2006 Feb;10(2):187-97 - PubMed
- Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18907-12 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous