Constitutive activation of protein kinase B and phosphorylation of p47phox by a membrane-targeted phosphoinositide 3-kinase - PubMed (original) (raw)

Constitutive activation of protein kinase B and phosphorylation of p47phox by a membrane-targeted phosphoinositide 3-kinase

S A Didichenko et al. Curr Biol. 1996.

Free article

Abstract

Background: Phosphoinositide 3-kinase (PI 3-kinase) activity is required for mitogenic signaling and for secretory responses. Cell activation is presumed to cause the translocation of PI 3-kinase from the cytosol to the plasma membrane where the kinase interacts with its substrate phosphatidylinositol (4,5)-bisphosphate. Thus, a membrane-targeted and therefore constitutively active kinase could help elucidate the role of PI 3-kinase in intracellular signaling.

Results: The membrane-targeting sequence of Ha-Ras, containing the consensus sequence for palmitoylation and farnesylation, was fused to the carboxyl terminus of p110 alpha, the catalytic subunit of PI 3-kinase. The lipid anchor directed PI 3-kinase to the membrane and led to constitutively elevated phosphatidylinositol (3,4,5)-trisphosphate levels in transfected cells. Expression of membrane-targeted PI 3-kinase resulted in the continuous activation of downstream effectors, such as protein kinase B (PKB, also known as Akt/RAC), which was recently shown to regulate glycogen synthase kinase-3. The constitutive activation of PKB was abolished by the specific PI 3-kinase inhibitor wortmannin, and PKB activation was marginal in transfectants expressing non-membrane-targeted PI 3-kinase. Multiple phosphorylation of the cytosolic factor p47phox is required for the rapid assembly of the phagocyte NADPH oxidase upon stimulation with agonists of G-protein-coupled receptors. We show here that the expression of membrane-targeted PI 3-kinase in the monoblastic cell line GM-1 results in a wortmannin-sensitive continuous phosphorylation of p47phox.

Conclusions: Targeting of PI 3-kinase to the site of its preferred substrate leads to constitutive stimulus-independent enhanced catalysis and is sufficient to regulate different signal transduction pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources