Andrea Pascucci | Università di Bologna (original) (raw)
Books by Andrea Pascucci
In this website, we collect some material (papers and Mathematica noteboooks) on analytical appr... more In this website, we collect some material (papers and Mathematica noteboooks) on analytical approximation methods in option pricing. In particular, we have studied a simplified approach to the approximation of the transition density in a general local volatility model.
This book offers an introduction to mathematical, probabilistic and numerical methods that are cu... more This book offers an introduction to mathematical, probabilistic and numerical methods that are currently used in that area of finance which deals with the pricing of derivative instruments. The exposition in the book is accessible to a reader having basic mathematical knowledge. Trying to reduce the number of formal technichalities, the text introduces rapidly the main concepts, with all the necessary mathematical rigour. The first part of the book presents the elements of probability theory and the pricing theory in a discrete-market setting. In particular, the fundamental theorems of asset pricing are proved in detail, the binomial and trinomial models are analysed, and some approaches to the pricing problem in incomplete markets are touched upon. In the second part, stochastic calculus and stochastic integration theory are treated in detail. The classical Black&Scoles model is presented at first in a Markovian setting using an approach based upon partial differential equations. Then, after examining Girsanov's theorem, arbitrage pricing theory is seen from another perspective, that of martingale theory. Later on, stochastic differential equations are studied thoroughly, and their connection with parabolic partial differential equations, even degenerate, is examined. The tools that are introduced are used to discuss some recent volatility models which generalise the classical Black&Scholes analysis. Then a part of the book is devoted to the description of the classical numerical methods that are used in the pricing of derivatives: the Monte Carlo method, the binomial trees and finite difference schemes. The last chapter contains an introduction to Malliavin Calculus providing several examples of application to the computation of the Greeks.
La Finanza Matematica ha visto un notevole sviluppo in tempi recenti, soprattutto per l’introduzi... more La Finanza Matematica ha visto un notevole sviluppo in tempi recenti, soprattutto per l’introduzione di strumenti finanziari atti a contenere il rischio nelle operazioni di mercato. Lo studio delle problematiche relative a tali strumenti richiede tecniche matematiche talvolta sofisticate di cui la maggior parte è legata alla teoria della Probabilità.
Il presente libro è inteso come testo per corsi di finanza matematica a livello di laurea triennale e nasce dall’esperienza d’insegnamento degli autori per tali corsi, con lo scopo di colmare una lacuna presente nell’attuale panorama nazionale e internazionale.
Benché concepito maggiormente per un corso di laurea in Matematica, esso si adatta anche a corsi di tipo quantitativo per le facoltà di Economia.
La struttura del testo, originata dall’idea di insegnare per esempi e contro-esempi, si è poi sviluppata in un testo completo che contiene anche la teoria. A differenza però di altre trattazioni teoriche, questo libro contiene numerosi esempi ed esercizi risolti.
Il testo è suddiviso in quattro parti in cui vengono trattati i seguenti argomenti: valutazione e copertura di derivati Europei, ottimizzazione di portafoglio (programmazione dinamica e metodi martingala), valutazione e copertura di derivati Americani, modelli multi-periodali per i tassi d’interesse.
Papers by Andrea Pascucci
Abstract: We propose a novel method for the analytical approximation in local volatility models w... more Abstract: We propose a novel method for the analytical approximation in local volatility models with Lévy jumps. In the case of Gaussian jumps, we provide an explicit approximation of the transition density of the underlying process by a heat kernel expansion: the approximation is derived in two ways, using PIDE techniques and working in the Fourier space. Our second and main result is an expansion of the characteristic function for a local volatility model with general Lévy jumps.
Page 1. Adjoint expansions in local Lévy models Andrea Pascucci University of Bologna, Italy join... more Page 1. Adjoint expansions in local Lévy models Andrea Pascucci University of Bologna, Italy joint work with Stefano Pagliarani and Candia Riga June 14, 2012 – Lévy processes: approximation and applications – Page 2. Black&Scholes and the smile problem X = log price dXt = µdt + σdWt Page 3. Black&Scholes and the smile problem X = log price dXt = µdt + σ (t, Xt)dWt Classical volatility modeling ▶ LV: local vol Page 4.
In this talk we discuss the possible application of the parametrix method to the problem of prici... more In this talk we discuss the possible application of the parametrix method to the problem of pricing and hedging derivatives securities. As it is well-known under the standard dynamically complete market hypotheses (see eg [5] Sects. 5.2 and 5.7) the forward price of an European option evolves according to a parabolic (possibly degenerate) partial differential equation.
All'interno di questa tesi parliamo dell'integrale di Riemann-Stieltjes e delle sue applicazioni ... more All'interno di questa tesi parliamo dell'integrale di Riemann-Stieltjes e delle sue applicazioni a processi stocastici di Poisson. Nel primo capitolo introduciamo il concetto di funzione a variazione limitata. Tale nozione servira per definire l'integrale di Riemann-Stieltjes e, in generale, per capire meglio gli argomenti ed esempi trattati successivamente. Nella prima parte del secondo capitolo introduciamo l'integrale di Riemann-Stiltjes e le sue principali propieta.
Abstract We present a simplified approach to the analytical approximation of the transition densi... more Abstract We present a simplified approach to the analytical approximation of the transition density related to a general local volatility model. The methodology is sufficiently flexible to be extended to time-dependent coefficients, multi-dimensional stochastic volatility models, degenerate parabolic PDEs related to Asian options and also to include jumps.
Page 1. Alma Mater Studiorum · Universit`a di Bologna FACOLT`A DI SCIENZE MATEMATICHE, FISICHE E ... more Page 1. Alma Mater Studiorum · Universit`a di Bologna FACOLT`A DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Magistrale in Matematica, Curriculum Applicativo Jarrow-Yildirim model for inflation: theory and applications Tesi di Laurea in Equazioni Differenziali Stocastiche Relatore: Chiar.mo Prof. Andrea Pascucci Presentata da: Elena Scardovi Prima Sessione, 24 giugno 2011 Anno Accademico 2010-2011 Page 2. Page 3.
Abstract In this paper the mathematical analysis of a model for pricing stock loan contracts, whe... more Abstract In this paper the mathematical analysis of a model for pricing stock loan contracts, when the accumulative dividend yield associated to the stock is returned by the lender to the borrower on redemption, is carried out. More precisely, the model is formulated in terms of an obstacle problem associated to a Kolmogorov equation and the existence and uniqueness in the set of solutions with polynomial growth are obtained. Also some regularity properties of the solution are analyzed.
The path-dependent volatility model by Hobson and Rogers is considered. It is known that this mod... more The path-dependent volatility model by Hobson and Rogers is considered. It is known that this model can potentially reproduce the observed smile and skew patterns of different directions, while preserving the completeness of the market. In order to quantitatively investigate the pricing performance of the model a calibration procedure is here derived. Numerical results based on S&P500 option prices give evidence of the effectiveness of the model.
Questo lavoroe dedicato all'analisi spettrale del comportamento del prezzo del mercato dell'energ... more Questo lavoroe dedicato all'analisi spettrale del comportamento del prezzo del mercato dell'energia elettrica; il nostro obiettivoe quello di introdurre il lettore allo studio di metodi che permettono di calcolare le ciclicita presenti nel mercato elettrico. I prezzi spot dell'energia elettrica presentano spesso una struttura complessa, piu complessa di quella dei prezzi spot di altri beni e di asset finanziari.
Abstract: We present new approximation formulas for local stochastic volatility models, possibly ... more Abstract: We present new approximation formulas for local stochastic volatility models, possibly including Lévy jumps. Our main result is an expansion of the characteristic function which is worked out in the Fourier space. Combined with standard Fourier methods, our result provides efficient and accurate formulas for the prices and the Greeks of plain vanilla options. We finally provide numerical results to illustrate the accuracy with real market data.
In this paper, we address the mathematical analysis and numerical solution of a model for pricing... more In this paper, we address the mathematical analysis and numerical solution of a model for pricing a defined benefit pension plan. More precisely, the benefits received by the member of the plan depend on the average salary and early retirement is allowed. Thus, the mathematical model is posed as an obstacle problem associated to a Kolmogorov equation in the time region where the salary is being averaged. Previously to the initial averaging date, a nonhomogeneous one factor Black-Scholes equation is posed.
A new analytical approximation tool, derived from the classical PDE theory, is introduced in orde... more A new analytical approximation tool, derived from the classical PDE theory, is introduced in order to build approximate transition densities of diffusions. The tool is useful for approximate pricing and hedging of financial derivatives and for maximum likelihood and method of moments estimates of diffusion parameters. The approximation is uniform with respect to time and space variables. Moreover, easily computable error bounds are available in any dimension.
Abstract This thesis is focused on the financial model for interest rates called the LIBOR Market... more Abstract This thesis is focused on the financial model for interest rates called the LIBOR Market Model, which belongs to the family of market models and it has as main objects the forward LIBOR rates. We will see it from its theoretical approach to its calibration to data provided by the market. In the appendixes, we provide the theoretical tools needed to understand the mathematical manipulations of the model, largely deriving from the theory of stochastic differential equations.
Negli ultimi anni hanno avuto un grande sviluppo approcci allo studio degli operatori differenzia... more Negli ultimi anni hanno avuto un grande sviluppo approcci allo studio degli operatori differenziali che fanno uso della teoria dei gruppi di Lie. Uno di questi è rappresentato dallo studio delle simmetrie, cioè di una particolare classe di trasformazioni che possiedano una certa struttura di gruppo (di Lie) e che ci permettano, a partire da una soluzione u, di trovare altre soluzioni mediante un'azione indotta su di essa.
We develop approximate formulae expressed in terms of elementary functions for the density, the p... more We develop approximate formulae expressed in terms of elementary functions for the density, the price and the Greeks of path dependent options of Asian style, in a general local volatility model. An algorithm for computing higher order approximations is provided. The proof is based on a heat kernel expansion method in the framework of hypoelliptic, not uniformly parabolic, partial differential equations.
L'intento di questa tesie trattare la disciplina del Risk Management ovvero gli strumenti attrave... more L'intento di questa tesie trattare la disciplina del Risk Management ovvero gli strumenti attraverso cui gli operatori finanziari misurano il rischio per mantenerlo sotto controllo. Il rischio puo manifestarsi sotto diverse forme e in diverse tipologie di attivita finanziarie, presso le banche, istituzioni finanziarie in genere, attivita industriali e commerciali.
In this website, we collect some material (papers and Mathematica noteboooks) on analytical appr... more In this website, we collect some material (papers and Mathematica noteboooks) on analytical approximation methods in option pricing. In particular, we have studied a simplified approach to the approximation of the transition density in a general local volatility model.
This book offers an introduction to mathematical, probabilistic and numerical methods that are cu... more This book offers an introduction to mathematical, probabilistic and numerical methods that are currently used in that area of finance which deals with the pricing of derivative instruments. The exposition in the book is accessible to a reader having basic mathematical knowledge. Trying to reduce the number of formal technichalities, the text introduces rapidly the main concepts, with all the necessary mathematical rigour. The first part of the book presents the elements of probability theory and the pricing theory in a discrete-market setting. In particular, the fundamental theorems of asset pricing are proved in detail, the binomial and trinomial models are analysed, and some approaches to the pricing problem in incomplete markets are touched upon. In the second part, stochastic calculus and stochastic integration theory are treated in detail. The classical Black&Scoles model is presented at first in a Markovian setting using an approach based upon partial differential equations. Then, after examining Girsanov's theorem, arbitrage pricing theory is seen from another perspective, that of martingale theory. Later on, stochastic differential equations are studied thoroughly, and their connection with parabolic partial differential equations, even degenerate, is examined. The tools that are introduced are used to discuss some recent volatility models which generalise the classical Black&Scholes analysis. Then a part of the book is devoted to the description of the classical numerical methods that are used in the pricing of derivatives: the Monte Carlo method, the binomial trees and finite difference schemes. The last chapter contains an introduction to Malliavin Calculus providing several examples of application to the computation of the Greeks.
La Finanza Matematica ha visto un notevole sviluppo in tempi recenti, soprattutto per l’introduzi... more La Finanza Matematica ha visto un notevole sviluppo in tempi recenti, soprattutto per l’introduzione di strumenti finanziari atti a contenere il rischio nelle operazioni di mercato. Lo studio delle problematiche relative a tali strumenti richiede tecniche matematiche talvolta sofisticate di cui la maggior parte è legata alla teoria della Probabilità.
Il presente libro è inteso come testo per corsi di finanza matematica a livello di laurea triennale e nasce dall’esperienza d’insegnamento degli autori per tali corsi, con lo scopo di colmare una lacuna presente nell’attuale panorama nazionale e internazionale.
Benché concepito maggiormente per un corso di laurea in Matematica, esso si adatta anche a corsi di tipo quantitativo per le facoltà di Economia.
La struttura del testo, originata dall’idea di insegnare per esempi e contro-esempi, si è poi sviluppata in un testo completo che contiene anche la teoria. A differenza però di altre trattazioni teoriche, questo libro contiene numerosi esempi ed esercizi risolti.
Il testo è suddiviso in quattro parti in cui vengono trattati i seguenti argomenti: valutazione e copertura di derivati Europei, ottimizzazione di portafoglio (programmazione dinamica e metodi martingala), valutazione e copertura di derivati Americani, modelli multi-periodali per i tassi d’interesse.
Abstract: We propose a novel method for the analytical approximation in local volatility models w... more Abstract: We propose a novel method for the analytical approximation in local volatility models with Lévy jumps. In the case of Gaussian jumps, we provide an explicit approximation of the transition density of the underlying process by a heat kernel expansion: the approximation is derived in two ways, using PIDE techniques and working in the Fourier space. Our second and main result is an expansion of the characteristic function for a local volatility model with general Lévy jumps.
Page 1. Adjoint expansions in local Lévy models Andrea Pascucci University of Bologna, Italy join... more Page 1. Adjoint expansions in local Lévy models Andrea Pascucci University of Bologna, Italy joint work with Stefano Pagliarani and Candia Riga June 14, 2012 – Lévy processes: approximation and applications – Page 2. Black&Scholes and the smile problem X = log price dXt = µdt + σdWt Page 3. Black&Scholes and the smile problem X = log price dXt = µdt + σ (t, Xt)dWt Classical volatility modeling ▶ LV: local vol Page 4.
In this talk we discuss the possible application of the parametrix method to the problem of prici... more In this talk we discuss the possible application of the parametrix method to the problem of pricing and hedging derivatives securities. As it is well-known under the standard dynamically complete market hypotheses (see eg [5] Sects. 5.2 and 5.7) the forward price of an European option evolves according to a parabolic (possibly degenerate) partial differential equation.
All'interno di questa tesi parliamo dell'integrale di Riemann-Stieltjes e delle sue applicazioni ... more All'interno di questa tesi parliamo dell'integrale di Riemann-Stieltjes e delle sue applicazioni a processi stocastici di Poisson. Nel primo capitolo introduciamo il concetto di funzione a variazione limitata. Tale nozione servira per definire l'integrale di Riemann-Stieltjes e, in generale, per capire meglio gli argomenti ed esempi trattati successivamente. Nella prima parte del secondo capitolo introduciamo l'integrale di Riemann-Stiltjes e le sue principali propieta.
Abstract We present a simplified approach to the analytical approximation of the transition densi... more Abstract We present a simplified approach to the analytical approximation of the transition density related to a general local volatility model. The methodology is sufficiently flexible to be extended to time-dependent coefficients, multi-dimensional stochastic volatility models, degenerate parabolic PDEs related to Asian options and also to include jumps.
Page 1. Alma Mater Studiorum · Universit`a di Bologna FACOLT`A DI SCIENZE MATEMATICHE, FISICHE E ... more Page 1. Alma Mater Studiorum · Universit`a di Bologna FACOLT`A DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Magistrale in Matematica, Curriculum Applicativo Jarrow-Yildirim model for inflation: theory and applications Tesi di Laurea in Equazioni Differenziali Stocastiche Relatore: Chiar.mo Prof. Andrea Pascucci Presentata da: Elena Scardovi Prima Sessione, 24 giugno 2011 Anno Accademico 2010-2011 Page 2. Page 3.
Abstract In this paper the mathematical analysis of a model for pricing stock loan contracts, whe... more Abstract In this paper the mathematical analysis of a model for pricing stock loan contracts, when the accumulative dividend yield associated to the stock is returned by the lender to the borrower on redemption, is carried out. More precisely, the model is formulated in terms of an obstacle problem associated to a Kolmogorov equation and the existence and uniqueness in the set of solutions with polynomial growth are obtained. Also some regularity properties of the solution are analyzed.
The path-dependent volatility model by Hobson and Rogers is considered. It is known that this mod... more The path-dependent volatility model by Hobson and Rogers is considered. It is known that this model can potentially reproduce the observed smile and skew patterns of different directions, while preserving the completeness of the market. In order to quantitatively investigate the pricing performance of the model a calibration procedure is here derived. Numerical results based on S&P500 option prices give evidence of the effectiveness of the model.
Questo lavoroe dedicato all'analisi spettrale del comportamento del prezzo del mercato dell'energ... more Questo lavoroe dedicato all'analisi spettrale del comportamento del prezzo del mercato dell'energia elettrica; il nostro obiettivoe quello di introdurre il lettore allo studio di metodi che permettono di calcolare le ciclicita presenti nel mercato elettrico. I prezzi spot dell'energia elettrica presentano spesso una struttura complessa, piu complessa di quella dei prezzi spot di altri beni e di asset finanziari.
Abstract: We present new approximation formulas for local stochastic volatility models, possibly ... more Abstract: We present new approximation formulas for local stochastic volatility models, possibly including Lévy jumps. Our main result is an expansion of the characteristic function which is worked out in the Fourier space. Combined with standard Fourier methods, our result provides efficient and accurate formulas for the prices and the Greeks of plain vanilla options. We finally provide numerical results to illustrate the accuracy with real market data.
In this paper, we address the mathematical analysis and numerical solution of a model for pricing... more In this paper, we address the mathematical analysis and numerical solution of a model for pricing a defined benefit pension plan. More precisely, the benefits received by the member of the plan depend on the average salary and early retirement is allowed. Thus, the mathematical model is posed as an obstacle problem associated to a Kolmogorov equation in the time region where the salary is being averaged. Previously to the initial averaging date, a nonhomogeneous one factor Black-Scholes equation is posed.
A new analytical approximation tool, derived from the classical PDE theory, is introduced in orde... more A new analytical approximation tool, derived from the classical PDE theory, is introduced in order to build approximate transition densities of diffusions. The tool is useful for approximate pricing and hedging of financial derivatives and for maximum likelihood and method of moments estimates of diffusion parameters. The approximation is uniform with respect to time and space variables. Moreover, easily computable error bounds are available in any dimension.
Abstract This thesis is focused on the financial model for interest rates called the LIBOR Market... more Abstract This thesis is focused on the financial model for interest rates called the LIBOR Market Model, which belongs to the family of market models and it has as main objects the forward LIBOR rates. We will see it from its theoretical approach to its calibration to data provided by the market. In the appendixes, we provide the theoretical tools needed to understand the mathematical manipulations of the model, largely deriving from the theory of stochastic differential equations.
Negli ultimi anni hanno avuto un grande sviluppo approcci allo studio degli operatori differenzia... more Negli ultimi anni hanno avuto un grande sviluppo approcci allo studio degli operatori differenziali che fanno uso della teoria dei gruppi di Lie. Uno di questi è rappresentato dallo studio delle simmetrie, cioè di una particolare classe di trasformazioni che possiedano una certa struttura di gruppo (di Lie) e che ci permettano, a partire da una soluzione u, di trovare altre soluzioni mediante un'azione indotta su di essa.
We develop approximate formulae expressed in terms of elementary functions for the density, the p... more We develop approximate formulae expressed in terms of elementary functions for the density, the price and the Greeks of path dependent options of Asian style, in a general local volatility model. An algorithm for computing higher order approximations is provided. The proof is based on a heat kernel expansion method in the framework of hypoelliptic, not uniformly parabolic, partial differential equations.
L'intento di questa tesie trattare la disciplina del Risk Management ovvero gli strumenti attrave... more L'intento di questa tesie trattare la disciplina del Risk Management ovvero gli strumenti attraverso cui gli operatori finanziari misurano il rischio per mantenerlo sotto controllo. Il rischio puo manifestarsi sotto diverse forme e in diverse tipologie di attivita finanziarie, presso le banche, istituzioni finanziarie in genere, attivita industriali e commerciali.
Con il termine opzioni esotiche si indicano quelle opzioni che presentano un payoff piu complesso... more Con il termine opzioni esotiche si indicano quelle opzioni che presentano un payoff piu complesso rispetto a quello delle opzioni standard: cio puo riguardare sia il processo di formazione del payoff nel tempo che la configurazione dello stesso a scadenza.
Page 1. Alma Mater Studiorum · Universit`a di Bologna FACOLT`A DI SCIENZE MATEMATICHE, FISICHE E ... more Page 1. Alma Mater Studiorum · Universit`a di Bologna FACOLT`A DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica Materia di Tesi: Matematica per le applicazioni economiche e finanziarie MODELLI PER LA STRUTTURA A TERMINE DEI TASSI Tesi di Laurea di Relatore Chiar.mo Prof. CHIARA CASTELLETTI ANDREA PASCUCCI Sessione III anno accademico 2003–04 Page 2. 2 Page 3. Alla mia famiglia e a mio nonno Mario Page 4.
L'inflazionee il processo che riguarda il continuo aumento generalizzato del livello dei prezzi d... more L'inflazionee il processo che riguarda il continuo aumento generalizzato del livello dei prezzi dei beni e servizi destinati al consumo della popolazione. L'inflazione negativae chiamata deflazione. Il tasso d'inflazionee l'incremento percentuale di un indice di riferimento calcolato in un intervallo di tempo specifico, generalmente 12 mesi. Varia nel tempo e cambia da paese a paese. Esso misura l'aumento tendenziale dei prezzi ed influisce, quindi, in modo indiretto, sul potere d'acquisto della moneta.