Decoration of Cyclodextrin on Surface of Porous Nano Silica via Disulfide Bond for the Controlled Drug Release (original) (raw)

Porous silicon-cyclodextrin based polymer composites for drug delivery applications

One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work-cyclodextrin–citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and pred-nisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/-cyclodextrin–citric acid polymer composites, nano-and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples.

Hierarchical self-assembly of heparin-PEG end-capped porous silica as a redox sensitive nanocarrier for doxorubicin delivery

Porous nanosilica (PNS) has been attracting a great attention in fabrication carriers for drug delivery system (DDS). However, unmodified PNS-based carriers exhibited the initial burst release of loaded bioactive molecules, which may limit their potential clinical application. In this study, the surface of PNS was conjugated with adamantylamine (A) via disulfide bonds (PNS-SS-A) which was functionalized with cyclodextrin-heparin-poly-ethylene glycol (CD-HPEG) for redox triggered doxorubicin (DOX) delivery. The modified PNS was successfully formed with spherical shape and diameter around 50 nm determined by transmission electron microscopy (TEM). DOX was efficiently trapped in the PNS-SS-A@CD-HPEG and slowly released in phosphate buffered saline (PBS) without any initial burst effect. Importantly, the release of DOX was triggered due to the cleavage of the disulfide bonds in the presence of dithiothreitol (DTT). In addition, the MTT assay data showed that PNS-SS-A@CD-HPEG was a biocompatible nanocarrier and reduced the toxicity of DOX. These results demonstrated that PNS-SS-A@CD-HPEG has great potential as a novel nanocarrier for anticancer drug in cancer therapy.

Nanostructured Silica Materials As Drug-Delivery Systems for Doxorubicin: Single Molecule and Cellular Studies

Nano Letters, 2009

We apply mesoporous thin silica films with nanometer-sized pores as drug carriers and incorporate the widely used anticancer drug Doxorubicin. Through single-molecule based measurements, we gain mechanistic insights into the drug diffusion inside the mesoporous film, which governs the drug-delivery at the target-site. Drug dynamics inside the nanopores is controlled by pore size and surface modification. The release kinetics is determined and live-cell measurements prove the applicability of the system for drug-delivery. This study demonstrates that mesoporous silica nanomaterials can provide solutions for current challenges in nanomedicine.

Doxorubicin Loaded Silica Nanotubes : An Investigation of the Release Behavior

2015

This study aimed to investigate the release behavior of doxorubicin(DOX) from nanostructured silica tubes as carrier. The nanostructured silica nanotubes were synthesized according to the sol-gel method using tetraethoxysilane (TEOS) as silica precursor in the presence of cetyl trimethylammonium bromide (CTAB) and D-sorbitol derived organogelator as structure directing agents. The silica nanotubes were successfully prepared and their morphology has been examined with scanning electron microscopy (SEM). The release of doxorubicin was carried out by using two different release media, of pH values 7.4 and 5.5 respectively. The release was carried out by using HPLC system and the results have been reported indicating the difference in the release behavior between these two different pH media.

Functionalized Mesoporous Silica as Doxorubicin Carriers and Cytotoxicity Boosters

Nanomaterials

Mesoporous silica nanoparticles (MSNs) bearing methyl, thiol or glucose groups were synthesized, and their encapsulation and release behaviors for the anticancer drug Doxorubicin (Dox) were investigated in comparison with nonporous homologous materials. The chemical modification of thiol-functional silica with a double bond glucoside was completed for the first time, by green thiol-ene photoaddition. The MSNs were characterized in terms of structure (FT-IR, Raman), morphology (TEM), porosity (nitrogen sorption–desorption) and Zeta potential measurements. The physical interactions responsible for the Dox encapsulation were investigated by analytic methods and MD simulations, and were correlated with the high loading efficiency of MSNs with thiol and glucose groups. High release at pH 5 was observed in most cases, with thiol-MSN exhibiting 98.25% cumulative release in sustained profile. At pH 7.4, the glucose-MSN showed 75.4% cumulative release, while the methyl-MSN exhibited a sustai...

The effect of cyclodextrin on both the agglomeration and the in vitro characteristics of drug loaded and targeted silica nanoparticles

IOP Conference Series: Materials Science and Engineering, 2018

One of the problems in the use of nanoparticles (NPs) as carriers in drug delivery systems is their agglomeration which mainly appears due to their high surface energy. This results in formation of NPs with different sizes leading to differences in their distribution and bioavailability. The surface coating of NPs with certain compounds can be used to prevent or minimize this problem. In this study, the effect of cyclodextrin (CD) on the agglomeration state and hence on the in vitro characteristics of drug loaded and targeted silica NPs was investigated. A sample of NPs was loaded with anticancer agents, then modified with a long polymer, carboxymethyl-β-cyclodextrin (CM-β-CD) and folic acid (FA), respectively. Another sample was modified similarly but without CD. The surface modification was characterized using fourier transform infrared spectroscopy (FT-IR). The polydispersity (PD) was measured using dynamic light scattering (DLS) and was found to be smaller for CD modified NPs. The results of the in vitro drug release showed that the release rate from both samples exhibited similar pattern for the first 5 hours, however the rate was faster from CD modified NPs after 24 hours. The in vitro cell viability assay confirmed that CD modified NPs were about 30% more toxic to HeLa cells. These findings suggest that CD has a clear effect in minimizing the agglomeration of such modified silica NPs, accelerating their drug release rate and enhancing their targeting effect.

Infuence of Microstructure in Drug Release Behavior of Silica Nanocapsules

Journal of Drug Delivery, 2013

Meso-and nanoporous structures are adequate matrices for controlled drug delivery systems, due to their large surface areas and to their bioactive and biocompatibility properties. Mesoporous materials of type SBA-15, synthesized under different pH conditions, and zeolite beta were studied in order to compare the different intrinsic morphological characteristics as pore size, pore connectivity, and pore geometry on the drug loading and release process. These materials were characterized by X-ray diffraction, nitrogen adsorption, scanning and transmission electron microscopy, and calorimetric measurements. Ibuprofen (IBU) was chosen as a model drug for the formulation of controlled-release dosage forms; it was impregnated into these two types of materials by a soaking procedure during different periods. Drug loading and release studies were followed by UV-Vis spectrophotometry. All nano-and mesostructured materials showed a similar loading behavior. It was found that the pore size and Al content strongly influenced the release process. These results suggest that the framework structure and architecture affect the drug adsorption and release properties of these materials. Both materials offer a good potential for a controlled delivery system of ibuprofen.

Bioactive silica-based drug delivery systems containing doxorubicin hydrochloride: In vitro studies

Colloids and Surfaces B: Biointerfaces, 2012

This study reports the applicability of sol-gel derived silica and silica-polydimethylsiloxane (silica-PDMS) composites as a potential bioactive implantable drug delivery system for doxorubicin hydrochloride (DOX). These composites also contain calcium chloride (CaCl 2) and triethylphosphate as precursors of Ca 2+ and (PO 4) 3− ions. These composites were immersed for 20 days in a simulated body fluid (SBF) at 37 • C to study the release rate of the DOX, dissolution of the silica and the formation of hydroxyapatite on the composites' surface. The results show that the release rate of the DOX can be effectively tailored by either the addition of a polydimethylsiloxane (PDMS), or by varying the amount of CaCl 2 , where the elution rate of DOX increases with increasing amount of the CaCl 2 precursor. Importantly, irrespective of the amount of CaCl 2 , no burst release of DOX has been observed in any of the silica-PDMS system investigated. On the other hand, a slow release of DOX has been observed with a trend that followed a zero (0)-order kinetics for a total of 20 days of elusion. The dissolution of silica in SBF was ca. two-times faster than that of silica-PDMS, with the former reaching an average saturation level of 80 g/mL whilst the latter reached 46 g/mL within 20 days. Both the silica and the silica-PDMS composites show bioactivity i.e. they absorb calcium phosphate from SBF. Within 10 days, a tenfold increase in the concentration of calcium phosphate deposit has been observed on the silica-PDMS relative to the silica. The constant rates of DOX release observed for the silica-PDMS composites indicate that the calcium phosphate deposit do not obstruct controlled release of the drug.

Impact of the strategy adopted for drug loading in nonporous silica nanoparticles on the drug release and cytotoxic activity

Journal of colloid and interface science, 2018

Nanoparticles are normally classified as "hard", mainly consisting of metal or metal oxide cores, or "soft", including polymer-based, liposomes and biomimetic nanoparticles. Soft nanoparticles have been studied in depth for drug formulation and therapeutic delivery applications, albeit hard nanoparticles may offer easier synthesis, smaller size and more effective tumor penetration. Among them, silica nanoparticles maintain excellent biocompatibility and biodegradability and can be finely adjusted in size and shape, easily produced in a large scale and functionalized or loaded with active molecules. To help filling the gap of a poor clinical translation of hard nanoparticles, we have designed and developed three different nonporous silica nanocarriers loading the chemotherapeutic doxorubicin within the core matrix, on the surface or both inside and outside, respectively. A comparative study was performed on drug loading and drug release, silica matrix degradation ...

The Engineering of Porous Silica and Hollow Silica Nanoparticles to Enhance Drug-loading Capacity

Processes, 2019

As a promising candidate for expanding the capacity of drug loading in silica nanoplatforms, hollow mesoporous silica nanoparticles (HMSNs) are gaining increasing attention. In this study, porous nanosilica (PNS) and HMSNs were prepared by the sol-gel method and template assisted method, then further used for Rhodamine (RhB) loading. To characterize the as-synthesized nanocarriers, a number of techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen absorption-desorption isotherms, dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR) were employed. The size of HMSN nanoparticles in aqueous solution averaged 134.0 ± 0.3 nm, which could be adjusted by minor changes during synthesis, whereas that of PNS nanoparticles was 63.4 ± 0.6 nm. In addition, the encapsulation of RhB into HMSN nanoparticles to form RhB-loaded nanocarriers (RhB/HMSN) was successful, achieving high loading efficie...