Visualizing Intrapopulation Hematopoietic Cell Heterogeneity with Self-Organizing Maps of SIMS Data (original) (raw)

Characterization and quantification of clonal heterogeneity among hematopoietic stem cells: a model-based approach

Blood, 2008

Hematopoietic stem cells (HSCs) show pronounced heterogeneity in self-renewal and differentiation behavior, which is reflected in their repopulation kinetics. Here, a single-cell–based mathematical model of HSC organization is used to examine the basis of HSC heterogeneity. Our modeling results, which are based on the analysis of limiting dilution competitive repopulation experiments in mice, demonstrate that small quantitative but clonally fixed differences of cellular properties are necessary and sufficient to account for the observed functional heterogeneity. The model predicts, and experimental data validate, that competitive pressures will amplify small clonal differences into large changes in the number of differentiated progeny. We further predict that the repertoire of HSC clones will evolve over time. Last, our results suggest that larger differences in cellular properties have to be assumed to account for genetically determined differences in HSC behavior as observed in di...

Systems mapping for hematopoietic progenitor cell heterogeneity

PloS one, 2015

Cells with the same genotype growing under the same conditions can show different phenotypes, which is known as "population heterogeneity". The heterogeneity of hematopoietic progenitor cells has an effect on their differentiation potential and lineage choices. However, the genetic mechanisms governing population heterogeneity remain unclear. Here, we present a statistical model for mapping the quantitative trait locus (QTL) that affects hematopoietic cell heterogeneity. This strategy, termed systems mapping, integrates a system of differential equations into the framework for systems mapping, allowing hypotheses regarding the interplay between genetic actions and cell heterogeneity to be tested. A simulation approach based on cell heterogeneity dynamics has been designed to test the statistical properties of the model. This model not only considers the traditional QTLs, but also indicates the methylated QTLs that can illustrate non-genetic individual differences. It has s...

Index-sorting resolves heterogeneous murine hematopoietic stem cell populations

Recent advances in the cellular and molecular biology of single stem cells have uncovered significant heterogeneity in the functional properties of stem cell populations. This has prompted the development of approaches to study single cells in isolation often performed using multi-parameter flow cytometry. However, many stem cell populations are too rare to test all possible cell surface marker combinations, and virtually nothing is known about functional differences associated with varying intensities of such markers. Here we describe the use of index sorting for further resolving the flow cytometric isolation of single murine hematopoietic stem cells (HSCs). Specifically, we associate single cell functional assay outcomes with distinct cell surface marker expression intensities. High levels of both CD150 and EPCR associate with delayed kinetics of cell division and low levels of differentiation. Moreover, cells that do not form single HSC-derived clones appear in the 7AADdim fraction, suggesting that even low levels of 7AAD staining are indicative of less healthy cell populations. These data show that, when used in combination with single cell functional assays, index sorting is a powerful tool for refining cell isolation strategies. This approach can be broadly applied to other single cell systems, both for improving isolation and for acquiring additional cell surface marker information.

Single-cell reconstitution reveals persistence of clonal heterogeneity in the murine hematopoietic system

2021

ABSTRACTThe persistence of patterns of monoallelic expression is a controversial matter. We report a genome-wide in vivo transcriptomics approach based on allelic expression imbalance to evaluate whether the transcriptional allelic patterns of single murine hematopoietic stem cells (HSC) are still present in the respective differentiated clonal B-cell populations. For 14 genes, we show conclusive evidence for a remarkable persistence in HSC-derived B clonal cells of allele-specific autosomal transcriptional states already present in HSCs. In a striking contrast to the frequency of genes with clonal allelic expression differences in clones expanded without differentiation (up to 10%), we find that clones that have undergone multiple differentiation steps in vivo are more similar to each other. These data suggest that most of the random allele-specific stable transcriptional states on autosomal chromosomes are established de novo during cell lineage differentiation. Given that allele-...

Hierarchical organization of fetal and adult hematopoietic stem cells

Experimental cell research, 2014

Mammalian hematopoiesis is a hierarchically organized process in which all types of mature blood cells are continuously generated from more primitive cells that lack any morphological evidence of differentiation. However, it is now accepted that this morphologically homogeneous precursor population consists of multiple distinct subsets of cells. The most primitive of these are defined by their ability to produce similarly undifferentiated progeny through many cell divisions, in addition to generating cells with activated differentiation programs. The term hematopoietic stem cell (HSC) is now conventionally restricted to cells with this long-term self-sustaining ability. Nevertheless, clonal tracking studies have revealed significant heterogeneity in the behavior of such stringently defined HSCs. Moreover, superimposed on the heterogeneous behavior that can be elicited from the HSCs present at any given time during development are additional differences that distinguish HSCs at diffe...

Functional characterization and phenotypic monitoring of human hematopoietic stem cell expansion and differentiation of monocytes and macrophages by whole-cell mass spectrometry

Stem cell research, 2017

The different facets of macrophages allow them to play distinct roles in tissue homeostasis, tissue repair and in response to infections. Individuals displaying dysregulated macrophage functions are proposed to be prone to inflammatory disorders or infections. However, this being a cause or a consequence of the pathology remains often unclear. In this context, we isolated and expanded CD34+ HSCs from healthy blood donors and derived them into CD14+ myeloid progenitors which were further enriched and differentiated into macrophages. Aiming for a comprehensive phenotypic profiling, we generated whole-cell mass spectrometry (WCMS) fingerprints of cell samples collected along the different stages of the differentiation process to build a predictive model using a linear discriminant analysis based on principal components. Through the capacity of the model to accurately predict sample's identity of a validation set, we demonstrate that WCMS profiles obtained from bona fide blood monoc...