Phylogeny of the ectomycorrhizal mushroom genus Alnicola (Basidiomycota, Cortinariaceae) based on rDNA sequences with special emphasis on host speciWcity and morphological characters (original) (raw)
Related papers
Molecular Phylogenetics and Evolution, 2006
Alnicola ( D Naucoria, pro parte) is a mushroom genus of strictly temperate, obligately ectomycorrhizal species, traditionally included in the family Cortinariaceae. Most Alnicola spp. are primarily host speciWc on Alnus, although a few are mycobionts of Salix or other hosts. The diVerent species of Alnicola exhibit unique morphological (cystidia, pileipellis) and cytological (dikaryotic or monokaryotic hyphae) characters. This makes the genus Alnicola of particular interest for studying the evolution of host speciWcity and morphological characters in ectomycorrhizal basidiomycetes. We used a combination of classical morphological and phylogenetic methods (rDNA ITS and LSU sequences) to address the following questions: (i) Is Alnicola monophyletic? And (ii) Are characters like host speciWcity or microscopical structures synapomorphic for certain clades? The study included nearly all currently known European Alnicola sp. Our results demonstrated that, on one hand, the genus Alnicola is polyphyletic, with sistergroup relationships to Hebeloma, Anamika or the clades /Hymenogaster I and /Hymenogaster II. On the other hand, Alnicola splits into three well-supported clades corresponding to the sections Alnicola, Submelinoides, and Salicicolae. The strict host-speciWcity to Alnus is a derived character and has occurred at least twice. The following morphological characters are synapomorphic for deWned clades: the spindle-shaped hymenial cystidia for sect. Alnicola, the hymeniform pileipellis for sect. Submelinoides, and monocaryotic/clampless hyphae for sect. Salicicolae and its sistergroup /Hymenogaster II. As a taxonomical consequence, polyphyly of Alnicola implies that the sects. Submelinoides and Salicicolae need to be segregated from Alnicola.
Background: Mycorrhizal fungi form intimate associations with their host plants that constitute their carbon resource and habitat. Alnus spp. (Betulaceae) are known to host an exceptional species-poor and specialized ectomycorrhizal (ECM) fungal community compared to other tree species, but the host-specificity pattern and its significance in terms of fungal diversification and speciation remain poorly documented. The degree of parallel speciation, host switching, and patterns of biogeography were explored in the historical associations between alders and three ECM taxa of Basidiomycetes: Alnicola (Agaricales), Alpova (Boletales), and Lactarius (Russulales). The aim was to develop an evolutionary framework on host specificity and diversification of Basidiomycetes in this highly specialized plant-fungus symbiosis.
Mycological Research, 2002
Current classifications of the Lyophylleae and the importance of siderophilous granulation in the basidia for the classification of agaricoid fungi were evaluated using parsimony analyses of sequence data from the nuclear ribosomal large subunit gene (nLSU), the internal transcribed spacer region of the nuclear ribosomal array (ITS), and the mitochondrial ribosomal small subunit gene (mtSSU). These three different data partitions were phylogenetically congruent on the basis of the Mickevich-Farris statistical test, but not from the ILD and the Templeton tests. Bootstrap supports for nodes in phylogenetic trees generated from combined nLSU, ITS, and mtSSU sequence data were generally higher than those in trees generated from individual data sets. This suggests a lack of major conflict in the phylogenetic signal among the different data sets. We conclude that the Mickevich-Farris test is more appropriate for estimating congruence and combinability between different sources of molecular data than the more widely used ILD and Templeton tests, at least when the different data sets have their respective resolution power at different depths in the phylogeny. Results of the combined analyses show that the Entolomataceae are a sister group to a clade composed of the Lyophylleae, Termitomyceteae, and Tricholomateae p.p. This implies that presence of siderophilous granulation in the basidia of agaric fungi has probably a single origin, and would have been lost in the Tricholomateae. Inclusion of the Termitomyceteae within the Lyophylleae suggests homology of the macro type granulation. Because the exact placement of Tricholomateae pro parte remains uncertain, it remains unclear whether the Lyophylleae (including Termitomyceteae) are monophyletic or paraphyletic. Within the Lyophylleae, genera Lyophyllum and Calocybe are shown to be artificial, as are Lyophyllum sections Lyophyllum, Difformia, and Tephrophana. Four main natural groups of Lyophylleae have been identified that should serve as a basis for developing a more natural classification system for these fungi.
A higher-level phylogenetic classification of the Fungi
D. S. Hibbett). a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m y c r e s m y c o l o g i c a l r e s e a r c h 1 1 1 ( 2 0 0 7 ) 5 0 9 -5 4 7 Eumycota Lichens Molecular phylogenetics Mycota Nomenclature Systematics a b s t r a c t A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Monoblepharidomycetes, Neocallimastigomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae.
Fungal Systematics and Evolution: FUSE 2
Sydowia, 2016
The present study introduces two new genera, 14 new species, five new combinations and 12 interesting host and/or geographical records. A majority of the fungi are Ascomycetes, but the study also includes a Basidiomycete, Xerocomellus fulvus described from Pakistan. Under single name nomenclature Zeuctomorpha arecae is reduced to synonymy under Acroconidiellina arecae (Sympoventuriaceae, Venturiales, Dothideomycetes). Based on morphology and phylogenetic affinities, Wojnowicia dactylidis, W. lonicerae and W. spartii are moved to the genus Wojnowiciella (Phaeosphaeriaceae, Pleosporales, Dothideomycetes) and Zalerion arboricola is now accommodated in Lophium (Mytilinidiaceae, Mytilinidiales, Dothideomycetes). Novel genera include: Alfariacladiella gen. nov. (Stachybotryaceae, Hypocreales, Sordariomycetes) with A. spartii sp. nov. as type species, and Calvolachnella gen. nov. (Chaetosphaeriales, Sordariomycetes) to accommodate Calvolachnella guaviyuensis comb. nov., previously included...
Fungal systematics and evolution: FUSE 1
Sydowia, 2015
Fungal Systematics and Evolution (FUSE) is introduced as a new series to expedite the publication of issues relating to the epitypification of formerly described species, report new sexual-asexual connections, the merging of sexual and asexual gen¬era following the end of dual nomenclature, and to describe species or note interesting observations regarding fungi. This first paper includes 18 new combinations, 13 new species, three new genera and one new family. All taxa are ascomycetes, except one novel species, which is a basidiomycete. Based on its acervular conidioma, Septoria capensis is allocated to the genus Ac¬ervuloseptoria (Mycosphaerellaceae, Capnodiales, Dothideomycetes). Cheirospora botryospora is shown to have a Phialophora synasexual morph, and to belong to the Helotiales (Leotiomycetes). The genus Circinotrichum (Xylariaceae, Xylariales) is shown to be paraphyletic, and in need of revision. Dictyochaeta triseptata (Chaetosphaeriaceae, Chaetosphaeriales, Sordariomycete...
Molecular Phylogenetics and Evolution, 2007
Cortinarius is the most species rich genus of mushroom forming fungi with an estimated 2000 spp. worldwide. However, species delimitation within the genus is often controversial. This is particularly true in the section Calochroi (incl. section Fulvi), where the number of accepted taxa in Europe ranges between c.60 and c.170 according to diVerent taxonomic schools. Here, we evaluated species delimitation within this taxonomically diYcult group of species and estimated their phylogenetic relationships. Species were delimited by phylogenetic inference and by comparison of ITS sequence data in combination with morphological characters. A total of 421 ITS sequences were analyzed, including data from 53 type specimens. The phylogenetic relationships of the identiWed species were estimated by analyzing ITS data in combination with sequence data from the two largest subunits of RNA polymerase II (RPB1 and RPB2). Seventy-nine species were identiWed, which are believed to constitute the bulk of the diversity of this group in Europe. The delimitation of species based on ITS sequences is more consistent with a conservative morphological species concept for most groups. ITS sequence data from 30 of the 53 types were identical to other taxa, and most of these can be readily treated as synonyms. This emphasizes the importance of critical analysis of collections before describing new taxa. The phylogenetic separation of species was, in general, unambiguous and there is considerable potential for using ITS sequence data as a barcode for the group. A high level of homoplasy and phenotypic plasticity was observed for morphological and ecological characters. Whereas most species and several minor lineages can be recognized by morphological and ecological character states, these same states are poor indicators at higher levels.
Molecular Ecology, 1998
We have assembled a sequence database for 80 genera of Basidiomycota from the Hymenomycete lineage (sensu Swann & Taylor 1993) for a small region of the mitochondrial large subunit rRNA gene. Our taxonomic sample is highly biased toward known ectomycorrhizal (EM) taxa, but also includes some related saprobic species. This gene fragment can be amplified directly from mycorrhizae, sequenced, and used to determine the family or subfamily of many unknown mycorrhizal basidiomycetes. The method is robust to minor sequencing errors, minor misalignments, and method of phylogenetic analysis. Evolutionary inferences are limited by the small size and conservative nature of the gene fragment. Nevertheless two interesting patterns emerge: (i) the switch between ectomycorrhizae and saprobic lifestyles appears to have happened convergently several and perhaps many times; and (ii) at least five independent lineages of ectomycorrhizal fungi are characterized by very short branch lengths. We estimate that two of these groups radiated in the mid-Tertiary, and we speculate that these radiations may have been caused by the expanding geographical range of their host trees during this period. The aligned database, which will continue to be updated, can be obtained from the following site on the WorldWide Web: http://mendel.berkeley.edu/boletus.html.