Cutting Edge: Marginal Zone Macrophages Regulate Antigen Transport by B Cells to the Follicle in the Spleen via CD21 (original) (raw)

Marginal zone B cells regulate antigen capture by marginal zone macrophages

Journal of immunology (Baltimore, Md. : 1950), 2011

The marginal zone (MZ) of the mouse spleen contains macrophages that express receptors that trap pathogens, including the scavenger receptor macrophage receptor with a collagenous structure and the C-type lectin specific intracellular adhesion molecule-grabbing nonintegrin receptor 1 (SIGN-R1). We previously reported that expression of SIGN-R1 was decreased in CD19-deficient mice. In this study, we demonstrate that SIGN-R1 is expressed on a subset of macrophage receptor with a collagenous structure (MARCO)(+) macrophages. This subset is diminished when MZ B cells are absent due to either genetic developmental defects or following transient migration of B cells out of the MZ. When B cells return to the MZ, there is a delay in recovery of SIGN-R1-expressing macrophages. During this period, capture of Ficoll, which for the macrophages requires SIGN-R1, remains defective not only by the macrophages, but also by the B cells. Thus, MZ B cells regulate expression of molecules on macrophage...

Macrophages Control the Retention and Trafficking of B Lymphocytes in the Splenic Marginal Zone

Journal of Experimental Medicine, 2003

The marginal zone of the spleen is a precisely ordered region that contains specialized subsets of B lymphocytes and macrophages. Disruption of the negative signaling inositol phosphatase, SH2-containing inositol-5-phosphatase 1 (SHIP), results in the loss of marginal zone B cells (MZBs) with reorganization of marginal zone macrophages (MZMOs) to the red pulp of the spleen. This primary macrophage defect, as revealed by selectively depleting SHIP in myeloid cells shows that MZMOs are specifically required for the retention of MZBs. The MZMO phenotype was reverted in SHIP/Bruton's tyrosine kinase (Btk) double knockout mice, thus identifying the Btk activating pathway as an essential component being regulated by SHIP. Furthermore, we identified a direct interaction between the MARCO scavenger receptor on MZMOs and MZBs. Activation or disruption of this interaction results in MZB migration to the follicle. The migration of the MZMOs was further studied after the response to Staphylococcus aureus , which induced MZMOs to move into the red pulp while MZBs migrated into the follicular zone. The marginal zone is therefore a dynamic structure in which retention and trafficking of B cells requires specific macrophage-B cell interactions.

Marginal Zone Macrophage Receptor MARCO Is Trapped in Conduits Formed by Follicular Dendritic Cells in the Spleen

Journal of Histochemistry & Cytochemistry, 2014

The marginal zone (MZ) region of the spleen plays an important role in leukocyte traffic and the removal of blood-borne pathogens by resident macrophages. Macrophage receptor with a collagenous structure (MARCO), expressed by MZ macrophages, recognizes several microbial ligands and is also involved in the retention of MZ B cells. Here, we report that MARCO is also associated with follicular dendritic cells (FDCs) in the spleen. In its FDC-associated form MARCO is arranged in 0.3-0.5-μm diameter granular-fibrillar structures with an appearance similar to the white pulp conduit system formed by fibroblastic reticular cells (FRCs), but with different compartment preference. The follicular display of MARCO resists irradiation and requires the presence of both MZ macrophages and differentiated FDCs. The follicular delivery of MARCO is independent from the shuffling of marginal zone B cells, and it persists after clodronate liposome-mediated depletion of MZ macrophages. Our findings thus indicate that MARCO is distributed to both MZ and follicles within the spleen into conduit-like structures, where FDC-bound MARCO may mediate communication between the stromal microenvironments of MZ and follicles.

Macrophages prevent the differentiation of autoreactive B cells by secreting CD40 ligand and interleukin-6

Blood, 2007

Activation of the innate immune system promotes polyclonal antibody secretion to eliminate invading pathogens. Inherent in this process is the potential to activate autoreactive B cells and induce autoimmunity. We showed previously that TLR-stimulated dendritic cells and macrophages regulate B cell tolerance to Smith antigen, in part through the secretion of interleukin-6 (IL-6). In this manuscript, we show that neutralization of IL-6 fails to abrogate macrophage-mediated repression and identify soluble CD40 ligand (CD40L) as a second repressive factor secreted by macrophages. CD40L selectively repressed Ig secretion by chronically antigen-experienced (anergic) immunoglobulin transgenic and nontransgenic B cells but not by transiently stimulated B cells. The importance of macrophages in maintaining B cell tolerance was apparent in lupus-prone MRL/lpr mice. Compared with C57BL/6 mice, macrophages from MRL/lpr mice were significantly less efficient at repressing immunoglobulin secreti...

The regulation of autoreactive B cells during innate immune responses

Immunologic Research, 2008

Systemic lupus erythematosus (SLE) highlights the dangers of dysregulated B cells and the importance of initiating and maintaining tolerance. In addition to central deletion, receptor editing, peripheral deletion, receptor revision, anergy, and indifference, we have described a new mechanism of B cell tolerance wherein dendritic cells (DCs) and macrophages (MUs) regulate autoreactive B cells during innate immune responses. In part, DCs and MUs repress autoreactive B cells by releasing IL-6 and soluble CD40L (sCD40L). This mechanism is selective in that IL-6 and sCD40L do not affect Ig secretion by naïve cells during innate immune responses, allowing immunity in the absence of autoimmunity. In lupus-prone mice, DCs and MUs are defective in secretion of IL-6 and sCD40L and cannot effectively repress autoantibody secretion suggesting that defects in DC/MUmediated tolerance may contribute to the autoimmune phenotype. Further, these studies suggest that reconstituting DCs and MUs in SLE patients might restore regulation of autoreactive B cells and provide an alternative to immunosuppressive therapies.

The presence of MOMA-2+ macrophages in the outer B cell zone and protection of the splenic micro-architecture from LPS-induced destruction depend on secreted IgM

European Journal of Immunology, 2007

The role secretory IgM has in protecting splenic tissue from LPS-induced damage was assessed in mice incapable of secreting IgM but able to express surface IgM and IgD. Within seconds after LPS challenge, 99% of the 131 I-labeled LPS was found in the liver and the spleen of both sIgM-deficient and wild-type mice. In the spleen FITC-labeled LPS was found on the surface of 2F8 + scavenger receptor macrophages localized in the outer marginal zone, while none of the labeled LPS could be detected on marginal zone ER-TR9 + and MOMA-1 + macrophages. An additional population of macrophages, MOMA-2 + , were capable of producing C3 locally in the T and B cell zone after LPS challenge. Local C3 production was regulated, as no C3 was found in splenic tissue of unchallenged mice. Interestingly, in the absence of circulating and locally produced secretory IgM, MOMA-2 + macrophages of the T and B cell zone failed to establish an additional ring of C3-producing macrophages in the outer B cell zone close to the marginal zone upon LPS challenge. The consequence was a massive destruction of the microarchitecture of the spleen where marginal zones disorganized, lymphoid follicles and T cell zones disrupted and follicular DC (FDC) networks disappeared.

{"__content__"=>"IL-21 drives expansion and plasma cell differentiation of autoreactive CD11cT-bet B cells in SLE.", "sup"=>[{"__content__"=>"hi"}, {"__content__"=>"+"}]}

Nature communications, 2018

Although the aetiology of systemic lupus erythematosus (SLE) is unclear, dysregulated B cell responses have been implicated. Here we show that an unusual CD11cT-bet B cell subset, with a unique expression profile including chemokine receptors consistent with migration to target tissues, is expanded in SLE patients, present in nephrotic kidney, enriched for autoreactive specificities and correlates with defined clinical manifestations. IL-21 can potently induce CD11cT-bet B cells and promote the differentiation of these cells into Ig-secreting autoreactive plasma cells. While murine studies have identified a role for T-bet-expressing B cells in autoimmunity, this study describes and exemplifies the importance of CD11cT-bet B cells in human SLE.

Circulating anergic B cells in the periphery of active systemic lupus erythematosus patients: functional and phenotypic characterization

Arthritis Research & Therapy, 2003

Japan Arthritis Res Ther 2003, 5(Suppl 3):1 (DOI 10.1186/ar800) Apoptosis is a principal mechanism in metazoans by which superfluous or potentially harmful cells are eliminated. Deregulation of this process leads to a variety of diseases such as cancer and autoimmune diseases. Stimuli that can induce apoptosis are relatively diverse, and include the death factors (Fas ligand, tumor necrosis factor and TRAIL), DNA damage, and oxidative stress. Regardless of the origin of the apoptotic stimulus, commitment to apoptosis leads to activation of caspases, a family of cysteine proteases. Cleavage of a select group of cellular substrates by caspases is responsible for the morphological and biochemical changes that characterize apoptotic cell death. The degradation of nuclear DNA into nucleosomal units is one of the features of apoptotic cell death, and is mediated by a caspase-activated DNase (CAD). Cells deficient in CAD undergo cell death without the DNA fragmentation, but CAD-null mice did not show any adverse phenotypes. A close examination of the apoptotic cells in these mice indicated that apoptotic cells are always in macrophages. It seems that at an early stage of apoptosis, the dying cells present an 'eat me signal' on their surface. This signal is recognized by macrophages for engulfment, and DNase II in the lysosomes of macrophages degrades DNA of apoptotic cells. Mice deficient in both CAD and DNase II genes were established, and the development of various organs was found to be severely impaired in these mutant mice. The mice accumulated a large amount of undigested DNA in macrophages in various tissues during development. This accumulation of DNA in macrophages activated the innate immunity to induce the expression of the interferon β gene. The interferon thus produced seems to be responsible for the impaired tissue development. These results indicate that the degradation of DNA during apoptotic cell death is an essential step of apoptosis to maintain mammalian homeostasis.

The Pathophysiologic Role of Monocytes and Macrophages in Systemic Lupus Erythematosus: A Reappraisal

Seminars in Arthritis and Rheumatism, 2010

Objectives: To review current developments, regarding the pathophysiologic role of monocytes and macrophages in systemic lupus erythematosus (SLE). Methods: We searched Medline for articles written in the English language using the following terms: monocyte(s) or macrophage(s) and lupus. Although our search spanned the years 1971 to 2008, the majority of the short-listed articles belonged to the period 2000 to 2008. Published literature on phenotypic and functional properties of monocytes/macrophages (Mo/M) in SLE was reviewed. References from identified articles were also selected. Currently available experimental data and their relevance to the pathogenesis of SLE are critically discussed. Results: It has traditionally been held that impaired phagocytosis by monocytes and macrophages in SLE allows for the accumulation of apoptotic debris leading to a sequel of autoimmune phenomena. Recent paradigms derived from animal models of systemic autoimmunity, however, has broadened our understanding regarding the possible pathophysiologic roles of Mo/M in SLE. Data derived from studies in patients with SLE show multiple aberrations in activation status and secretory functions of circulating and tissue-infiltrating Mo/M. Such aberrations may be associated with dysregulation of T-cell function and autoantibody production in SLE. Moreover, emerging evidence suggests that phagocytic capacity and antigen-presenting properties of Mo/M are enhanced in some patients with SLE. Conclusions: While defective phagocytosis represents a distinctive feature of monocyte function in some patients with SLE, aberrant activation of the Mo/M system may be a more appropriate concept to encompass the broad spectrum of Mo/M disorders in SLE. Aberrant function of lupus Mo/M appears to play a dynamic role in the initiation and perpetuation of the systemic autoimmune response and organ damage. Delineation of the altered biology of lupus Mo/M could provide possible future therapeutic targets for patients with SLE.