Treatment of Dyslipidemia through Targeted Therapy of Gut Microbiota (original) (raw)

The Role of Gut Microbiota and Its Produced Metabolites in Obesity, Dyslipidemia, Adipocyte Dysfunction, and Its Interventions

Metabolites, 2021

Obesity is becoming an increasing problem worldwide and is often, but not invariably, associated with dyslipidemia. The gut microbiota is increasingly linked to cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes mellitus. However, relatively little focus has been attributed to the role of gut-microbiota-derived metabolites in the development of dyslipidemia and alterations in lipid metabolism. In this review, we discuss current data involved in these processes and point out the therapeutic potentials. We cover the ability of gut microbiota metabolites to alter lipoprotein lipase action, VLDL secretion, and plasma triglyceride levels, and its effects on reverse cholesterol transport, adipocyte dysfunction, and adipose tissue inflammation. Finally, the current intervention strategies for treatment of obesity and dyslipidemia is addressed with emphasis on the role of gut microbiota metabolites and its ability to predict treatment efficacies.

The use of probiotics for improving lipid profiles in dyslipidemic individuals: an overview protocol

Systematic reviews, 2018

Dyslipidemia is a major risk factor in triggering cardiovascular events, which can lead to the death of millions of people around the world. Thus, several pharmacological and non-pharmacological therapeutic strategies have been developed in recent decades with the objective of improving lipid profiles, including the use of probiotics. Therefore, the purpose of this protocol is to describe the steps that will guide the construction of an overview to demonstrate the scientific evidence of the efficacy of probiotics in improving the lipid profile of dyslipidemic individuals and to propose specific recommendations regarding their use. The search will be conducted in the following databases: MEDLINE/PubMed, EMBASE, PROSPERO, Cochrane Library, CINAHL, JBI Database of Systematic Reviews and Implementation Reports, Google Scholar, and CADTH. Reviewers will select systematic evaluations and data analyses from randomized clinical trials that evaluated the effects of probiotics on lipid profil...

The Effects of Probiotic Supplementation on Dyslipidemia

2017

Introduction Dyslipidemia is a significant yet modifiable risk factor for atherosclerosis and cardiovascular disease (CVD). As CVD is the leading cause of death for men and women in the United States, evaluating novel approaches to risk management is imperative. Standard care for dyslipidemia in those without familial hypercholesterolemia may involve therapeutic lifestyle changes including diet and exercise, as well as pharmacologic management. Despite the efficacy of pharmacologic therapy, not everyone who is suitable for lipid-lowering medications is treated. Barriers to medical treatment may include cost, preference to avoid medication, and statin-induced myalgias.

Gut Microbiota, Diet, and Heart Disease

Journal of AOAC INTERNATIONAL, 2012

Modulation of the gut microbiota is an area of growing interest, particularly for its link to improving and maintaining the systemic health of the host. It has been suggested to have potential to reduce risk factors associated with chronic diseases, such as elevated cholesterol levels in coronary heart disease (CHD). Diets of our evolutionary ancestors were largely based on plant foods, high in dietary fiber and fermentable substrate, and our gut microbiota has evolved against a background of such diets. Therapeutic diets that mimic plant-based diets from the early phases of human evolution may result in drug-like cholesterol reductions. In contrast, typical Western diets low in dietary fiber and fermentable substrate, and high in saturated and trans fatty acids, are likely contributors to the increased need for pharmacological agents for cholesterol reduction. The gut microbiota of those consuming a Western diet are likely underutilized and depleted of metabolic fuels, resulting in...

Nutritionally Attenuating the Human Gut Microbiome To Prevent and Manage Metabolic Syndrome

Journal of Agricultural and Food Chemistry, 2019

Metabolic syndrome (MSyn) constitutes a litany of pathophysiological conditions such as central adiposity, hypertension, dyslipidemia and hyperglycemia. Due to the epidemic levels of MSyn, several efforts have been made to identify the etiologies of the condition and develop methods by which to reduce its prevalence. The attenuation of the gut microflora ratio of Firmicutes to Bacteroidetes through bioactive compounds found in the Mediterranean diet, dietary polysaccharides, and pre-and probiotics can be used as functional foods to improve derangements in cardiometabolic markers correlated with the development of MSyn. Although more studies are needed to understand the role of manipulating the gut microbiota in health and disease in human models, this review, based on current data from epidemiologic studies and clinical trials, will serve as a review to elucidate the role nutrition plays in attenuating the gut microbiota in preventing and managing MSyn.

Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota? 1

Obesity increases the risk of type 2 diabetes, cardiovascular diseases, and certain cancers, which are among the leading causes of death worldwide. Obesity and obesity-related metabolic diseases are characterized by specific alterations in the human gut microbiota. Experimental studies with gut microbiota transplantations in mice and in humans indicate that a specific gut microbiota composition can be the cause and not just the consequence of the obese state and metabolic disease, which suggests a potential for gut microbiota modulation in prevention and treatment of obesity-related metabolic diseases. In addition, dietary intervention studies have suggested that modulation of the gut microbiota can improve metabolic risk markers in humans, but a causal role of the gut microbiota in such studies has not yet been established. Here, we review and discuss the role of the gut microbiota in obesity-related metabolic diseases and the potential of dietary modulation of the gut microbiota in metabolic disease prevention and treatment. Adv Nutr 2016;7:90-101.

Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota?

Advances in nutrition (Bethesda, Md.), 2016

Obesity increases the risk of type 2 diabetes, cardiovascular diseases, and certain cancers, which are among the leading causes of death worldwide. Obesity and obesity-related metabolic diseases are characterized by specific alterations in the human gut microbiota. Experimental studies with gut microbiota transplantations in mice and in humans indicate that a specific gut microbiota composition can be the cause and not just the consequence of the obese state and metabolic disease, which suggests a potential for gut microbiota modulation in prevention and treatment of obesity-related metabolic diseases. In addition, dietary intervention studies have suggested that modulation of the gut microbiota can improve metabolic risk markers in humans, but a causal role of the gut microbiota in such studies has not yet been established. Here, we review and discuss the role of the gut microbiota in obesity-related metabolic diseases and the potential of dietary modulation of the gut microbiota i...

Recent advances in modulation of cardiovascular diseases by the gut microbiota

Journal of Human Hypertension

The gut microbiota has recently gained attention due to its association with cardiovascular health, cancers, gastrointestinal disorders, and non-communicable diseases. One critical question is how the composition of the microbiota contributes to cardiovascular diseases (CVDs). Insightful reviews on the gut microbiota, its metabolites and the mechanisms that underlie its contribution to CVD are limited. Hence, the aim of this review was to describe linkages between the composition of the microbiota and CVD, CVD risk factors such as hypertension, diet, ageing, and sex differences. We have also highlighted potential therapies for improving the composition of the gut microbiota, which may result in better cardiovascular health.

From obesity through gut microbiota to cardiovascular diseases: a dangerous journey

International Journal of Obesity Supplements, 2020

The coexistence of humans and gut microbiota started millions of years ago. Until now, a balance gradually developed between gut bacteria and their hosts. It is now recognized that gut microbiota are key to form adequate immune and metabolic functions and, more in general, for the maintenance of good health. Gut microbiota are established before birth under the influence of maternal nutrition and metabolic status, which can impact the future metabolic risk of the offspring in terms of obesity, diabetes, and cardiometabolic disorders during the lifespan. Obesity and diabetes are prone to disrupt the gut microbiota and alter the gut barrier permeability, leading to metabolic endotoxaemia with its detrimental consequences on health. Specific bacterial sequences are now viewed as peculiar signatures of the metabolic syndrome across life stages in each individual, and are linked to pathogenesis of cardiovascular diseases (CVDs) via metabolic products (metabolites) and immune modulation. These mechanisms have been linked, in association with abnormalities in microbial richness and diversity, to an increased risk of developing arterial hypertension, systemic inflammation, nonalcoholic fatty liver disease, coronary artery disease, chronic kidney disease, and heart failure. Emerging strategies for the manipulation of intestinal microbiota represent a promising therapeutic option for the prevention and treatment of CVD especially in individuals prone to CV events.

Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseases

Foods

The human gut harbors microbial ecology that is in a symbiotic relationship with its host and has a vital function in keeping host homeostasis. Inimical alterations in the composition of gut microbiota, known as gut dysbiosis, have been associated with cardiometabolic diseases. Studies have revealed the variation in gut microbiota composition in healthy individuals as compared to the composition of those with cardiometabolic diseases. Perturbation of host–microbial interaction attenuates physiological processes and may incite several cardiometabolic disease pathways. This imbalance contributes to cardiometabolic diseases via metabolism-independent and metabolite-dependent pathways. The aim of this review was to elucidate studies that have demonstrated the complex relationship between the intestinal microbiota as well as their metabolites and the development/progression of cardiometabolic diseases. Furthermore, we systematically itemized the potential therapeutic approaches for cardi...