A novel cyanide-inducible gene cluster helps protect Pseudomonas aeruginosa from cyanide (original) (raw)

Involvement of Pseudomonas aeruginosa Rhodanese in Protection from Cyanide Toxicity

Emanuela Frangipani

Applied and Environmental Microbiology, 2007

View PDFchevron_right

Pseudomonas aeruginosa AlgR Controls Cyanide Production in an AlgZ-Dependent Manner

Michael Schurr

Journal of Bacteriology, 2009

View PDFchevron_right

The Transcriptional Regulator AlgR Controls Cyanide Production in Pseudomonas aeruginosa

Michael Schurr, K. Simpson

Journal of Bacteriology, 2004

View PDFchevron_right

Variation in hydrogen cyanide production between different strains of Pseudomonas aeruginosa

Francis Gilchrist

European Respiratory Journal, 2011

View PDFchevron_right

Essential Role of Cytochrome bd-Related Oxidase in Cyanide Resistance of Pseudomonas pseudoalcaligenes CECT5344

Tino Merchan

Applied and Environmental Microbiology, 2007

View PDFchevron_right

PCR amplification of hydrogen cyanide biosynthetic locus hcnAB in Pseudomonas spp.

Miro Svercel

View PDFchevron_right

Polymorphism in hcnAB Gene in Pseudomonas Species Reveals Ecologically Distinct Hydrogen Cyanide-Producing Populations

David Kothamasi

Geomicrobiology Journal, 2013

View PDFchevron_right

Putative small RNAs controlling detoxification of industrial cyanide-containing wastewaters by Pseudomonas pseudoalcaligenes CECT5344

Alfonso Olaya Abril

PLOS ONE, 2019

View PDFchevron_right

Enzymatic Detoxification of Cyanide: Clues from Pseudomonas aeruginosa Rhodanese

Paolo Visca

Journal of Molecular Microbiology and Biotechnology, 2008

View PDFchevron_right

The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin

Pierre Cornelis

Microbiology, 2010

View PDFchevron_right

Isocitrate Lyase Supplies Precursors for Hydrogen Cyanide Production in a Cystic Fibrosis Isolate of Pseudomonas aeruginosa

Bob Locy

Journal of Bacteriology, 2009

View PDFchevron_right

Global transcriptomic response of Pseudomonas aeruginosa to chlorhexidine diacetate

Hyeung-jin Jang

2009

View PDFchevron_right

Draft whole genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344

Oscar Gutiérrez

Environmental Microbiology, 2013

View PDFchevron_right

DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater

Lara Sáez

Journal of Biotechnology, 2015

View PDFchevron_right

Role of Fur on cyanide tolerance of Pseudomonas pseudoalcaligenes CECT5344

Tino Merchan

Biochemical Society Transactions, 2011

View PDFchevron_right

Metabolic adaptation of Pseudomonas pseudoalcaligenes CECT5344 to cyanide: role of malate–quinone oxidoreductases, aconitase and fumarase isoenzymes

Tino Merchan

Biochemical Society Transactions, 2011

View PDFchevron_right

Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61

Kazunori Ikebukuro

Applied Microbiology and Biotechnology, 1998

View PDFchevron_right

Characterization of the Pseudomonas pseudoalcaligenes CECT5344 Cyanase, an Enzyme That Is Not Essential for Cyanide Assimilation

Maria Huertas

Applied and Environmental Microbiology, 2008

View PDFchevron_right

An orphan cbb 3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence

Lars Dietrich

View PDFchevron_right

Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate : quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain

Tino Merchan

Microbiology, 2011

View PDFchevron_right

The PqrR transcriptional repressor of Pseudomonas aeruginosa transduces redox signals via an iron-containing prosthetic group

Michael Maroney

Journal of …, 2009

View PDFchevron_right

A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence

Kamil Hercik

BMC Genomics, 2011

View PDFchevron_right

ChrR, a Soluble Quinone Reductase of Pseudomonas putida That Defends against H2O2

claudio gonzalez

Journal of Biological Chemistry, 2005

View PDFchevron_right

Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites

Stephan Heeb

Proceedings of the National Academy of Sciences of the United States of America, 1999

View PDFchevron_right

The Major Catalase Gene (katA) of Pseudomonas aeruginosa PA14 Is under both Positive and Negative Control of the Global Transactivator OxyR in Response to Hydrogen Peroxide

kyoung-hee Choi

Journal of Bacteriology, 2010

View PDFchevron_right

The YebC Family Protein PA0964 Negatively Regulates the Pseudomonas aeruginosa Quinolone Signal System and Pyocyanin Production

Mike Surette

Journal of Bacteriology, 2008

View PDFchevron_right

Multiple phenotypic alterations caused by a c-type cytochrome maturation ccmC gene mutation in Pseudomonas aeruginosa

Pierre Cornelis

Microbiology, 2008

View PDFchevron_right

Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol

Hyeung-jin Jang

2008

View PDFchevron_right

Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr

Ute Römling

Molecular Microbiology, 1998

View PDFchevron_right