A novel cyanide-inducible gene cluster helps protect Pseudomonas aeruginosa from cyanide (original) (raw)
Involvement of Pseudomonas aeruginosa Rhodanese in Protection from Cyanide Toxicity
Emanuela Frangipani
Applied and Environmental Microbiology, 2007
View PDFchevron_right
Pseudomonas aeruginosa AlgR Controls Cyanide Production in an AlgZ-Dependent Manner
Michael Schurr
Journal of Bacteriology, 2009
View PDFchevron_right
The Transcriptional Regulator AlgR Controls Cyanide Production in Pseudomonas aeruginosa
Michael Schurr, K. Simpson
Journal of Bacteriology, 2004
View PDFchevron_right
Variation in hydrogen cyanide production between different strains of Pseudomonas aeruginosa
Francis Gilchrist
European Respiratory Journal, 2011
View PDFchevron_right
Essential Role of Cytochrome bd-Related Oxidase in Cyanide Resistance of Pseudomonas pseudoalcaligenes CECT5344
Tino Merchan
Applied and Environmental Microbiology, 2007
View PDFchevron_right
PCR amplification of hydrogen cyanide biosynthetic locus hcnAB in Pseudomonas spp.
Miro Svercel
View PDFchevron_right
Polymorphism in hcnAB Gene in Pseudomonas Species Reveals Ecologically Distinct Hydrogen Cyanide-Producing Populations
David Kothamasi
Geomicrobiology Journal, 2013
View PDFchevron_right
Putative small RNAs controlling detoxification of industrial cyanide-containing wastewaters by Pseudomonas pseudoalcaligenes CECT5344
Alfonso Olaya Abril
PLOS ONE, 2019
View PDFchevron_right
Enzymatic Detoxification of Cyanide: Clues from Pseudomonas aeruginosa Rhodanese
Paolo Visca
Journal of Molecular Microbiology and Biotechnology, 2008
View PDFchevron_right
The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin
Pierre Cornelis
Microbiology, 2010
View PDFchevron_right
Isocitrate Lyase Supplies Precursors for Hydrogen Cyanide Production in a Cystic Fibrosis Isolate of Pseudomonas aeruginosa
Bob Locy
Journal of Bacteriology, 2009
View PDFchevron_right
Global transcriptomic response of Pseudomonas aeruginosa to chlorhexidine diacetate
Hyeung-jin Jang
2009
View PDFchevron_right
Draft whole genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344
Oscar Gutiérrez
Environmental Microbiology, 2013
View PDFchevron_right
DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater
Lara Sáez
Journal of Biotechnology, 2015
View PDFchevron_right
Role of Fur on cyanide tolerance of Pseudomonas pseudoalcaligenes CECT5344
Tino Merchan
Biochemical Society Transactions, 2011
View PDFchevron_right
Metabolic adaptation of Pseudomonas pseudoalcaligenes CECT5344 to cyanide: role of malate–quinone oxidoreductases, aconitase and fumarase isoenzymes
Tino Merchan
Biochemical Society Transactions, 2011
View PDFchevron_right
Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61
Kazunori Ikebukuro
Applied Microbiology and Biotechnology, 1998
View PDFchevron_right
Characterization of the Pseudomonas pseudoalcaligenes CECT5344 Cyanase, an Enzyme That Is Not Essential for Cyanide Assimilation
Maria Huertas
Applied and Environmental Microbiology, 2008
View PDFchevron_right
An orphan cbb 3-type cytochrome oxidase subunit supports Pseudomonas aeruginosa biofilm growth and virulence
Lars Dietrich
View PDFchevron_right
Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate : quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain
Tino Merchan
Microbiology, 2011
View PDFchevron_right
The PqrR transcriptional repressor of Pseudomonas aeruginosa transduces redox signals via an iron-containing prosthetic group
Michael Maroney
Journal of …, 2009
View PDFchevron_right
A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence
Kamil Hercik
BMC Genomics, 2011
View PDFchevron_right
ChrR, a Soluble Quinone Reductase of Pseudomonas putida That Defends against H2O2
claudio gonzalez
Journal of Biological Chemistry, 2005
View PDFchevron_right
Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites
Stephan Heeb
Proceedings of the National Academy of Sciences of the United States of America, 1999
View PDFchevron_right
The Major Catalase Gene (katA) of Pseudomonas aeruginosa PA14 Is under both Positive and Negative Control of the Global Transactivator OxyR in Response to Hydrogen Peroxide
kyoung-hee Choi
Journal of Bacteriology, 2010
View PDFchevron_right
The YebC Family Protein PA0964 Negatively Regulates the Pseudomonas aeruginosa Quinolone Signal System and Pyocyanin Production
Mike Surette
Journal of Bacteriology, 2008
View PDFchevron_right
Multiple phenotypic alterations caused by a c-type cytochrome maturation ccmC gene mutation in Pseudomonas aeruginosa
Pierre Cornelis
Microbiology, 2008
View PDFchevron_right
Toxicogenomic response of Pseudomonas aeruginosa to ortho-phenylphenol
Hyeung-jin Jang
2008
View PDFchevron_right
Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr
Ute Römling
Molecular Microbiology, 1998
View PDFchevron_right