Crystal structure of Schistosoma purine nucleoside phosphorylase complexed with a novel monocyclic inhibitor (original) (raw)
Related papers
Acta Crystallographica Section D Biological Crystallography, 2003
The parasite Schistosoma mansoni, unlike its mammalian hosts, lacks the de novo pathway for purine biosynthesis and depends on salvage pathways for its purine requirements. The gene encoding one enzyme of this pathway, purine nucleoside phosphorylase from S. mansoni (SmPNP) was identi®ed, fully sequenced and cloned into the bacterial expression vector pMAL c2G to produce a protein in fusion with maltose-binding protein. The recombinant fusion protein was expressed at high levels and was puri®ed in a single step by amylose resin af®nity chromatography. After factor Xa cleavage, SmPNP was puri®ed using a cation-exchange column and crystallized by hanging-drop vapour diffusion using polyethylene glycol 1500 as precipitant in the presence of 20% glycerol in acetate buffer. The use of the non-detergent sulfobetaine 195 (NDSB 195) as an additive had a marked effect on the size of the resulting crystals. Two data sets were obtained, one from a crystal grown in the absence of NDSB 195 and one from a crystal grown in its presence. The crystals are isomorphous and belong to the space group P2 1 2 1 2 1 . It is intended to use the structures in the discovery and development of speci®c inhibitors of SmPNP.
Journal of Molecular Biology, 2005
Despite the availability of effective chemotherapy, schistosomiasis continues to be one of the major parasitic infections to affect the human population worldwide. Currently, little is known of the structural biology of the parasites that are responsible for the disease and few attempts have been made to develop second generation drugs, which may become essential if resistance to those currently available becomes an issue. Here, we describe three crystal structures for the enzyme purine nucleoside phosphorylase (PNP) from Schistosoma mansoni, a component of the purine salvage pathway. PNP is known to be essential for the recovery of purine bases and nucleosides in schistosomes, due to an absence of the enzymes for de novo synthesis, making it a sensitive point in the parasite's metabolism. In all three structures reported here, acetate occupies part of the base-binding site and is directly bound to the conserved glutamic acid at position 203. One of the structures presents the crystallization additive sulfobetaine 195 (NDSB195) occupying simultaneously the ribose and phosphate binding sites, whilst a second presents only phosphate in the latter. The observation of sulfobetaine specifically bound to the protein active site was unexpected and is unique to this structure as far as we are aware. Considerable flexibility is observed in the active site, principally due to variable structural disorder in the regions centered on residues 64 and 260. This conformational plasticity extends to the way in which both NDSB195 and phosphate bind to the individual monomers of the trimeric structure reported here. Differences between the parasite and human enzymes are limited principally to the base-binding site, where the substitution of V245 in the mammalian enzymes by S247 introduces additional hydrogen bonding potential to the site. This is satisfied in the structures described here by a water molecule whose presence is normally observed only in complexes with 6-oxopurines. Residue Y202, which replaces F200 in human PNP, is able to reach over the ribose-binding site to interact with H259 and is predicted to form an additional hydrogen bond with the 5 0 hydroxyl of nucleoside substrates.
J Mol Biol, 2005
Despite the availability of effective chemotherapy, schistosomiasis continues to be one of the major parasitic infections to affect the human population worldwide. Currently, little is known of the structural biology of the parasites that are responsible for the disease and few attempts have been made to develop second generation drugs, which may become essential if resistance to those currently available becomes an issue. Here, we describe three crystal structures for the enzyme purine nucleoside phosphorylase (PNP) from Schistosoma mansoni, a component of the purine salvage pathway. PNP is known to be essential for the recovery of purine bases and nucleosides in schistosomes, due to an absence of the enzymes for de novo synthesis, making it a sensitive point in the parasite's metabolism. In all three structures reported here, acetate occupies part of the base-binding site and is directly bound to the conserved glutamic acid at position 203. One of the structures presents the crystallization additive sulfobetaine 195 (NDSB195) occupying simultaneously the ribose and phosphate binding sites, whilst a second presents only phosphate in the latter. The observation of sulfobetaine specifically bound to the protein active site was unexpected and is unique to this structure as far as we are aware. Considerable flexibility is observed in the active site, principally due to variable structural disorder in the regions centered on residues 64 and 260. This conformational plasticity extends to the way in which both NDSB195 and phosphate bind to the individual monomers of the trimeric structure reported here. Differences between the parasite and human enzymes are limited principally to the base-binding site, where the substitution of V245 in the mammalian enzymes by S247 introduces additional hydrogen bonding potential to the site. This is satisfied in the structures described here by a water molecule whose presence is normally observed only in complexes with 6-oxopurines. Residue Y202, which replaces F200 in human PNP, is able to reach over the ribose-binding site to interact with H259 and is predicted to form an additional hydrogen bond with the 5 0 hydroxyl of nucleoside substrates.
Bioorganic & Medicinal Chemistry, 2010
Selectivity plays a crucial role in the design of enzyme inhibitors as novel antiparasitic agents, particularly in cases where the target enzyme is also present in the human host. Purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive target for the discovery of potential antischistosomal agents. In the present work, kinetic studies were carried out in order to determine the inhibitory potency, mode of action and enzyme selectivity of a series of inhibitors of SmPNP. In addition, crystallographic studies provided important structural insights for rational inhibitor design, revealing consistent structural differences in the binding mode of the inhibitors in the active sites of the SmPNP and human PNP (HsPNP) structures. The molecular information gathered in this work should be useful for future medicinal chemistry efforts in the design of new inhibitors of SmPNP having increased affinity and selectivity.
Purine nucleoside phosphorylase from Schistosoma mansoni in complex with ribose-1-phosphate
Journal of Synchrotron Radiation, 2011
Schistosomes are blood flukes which cause schistosomiasis, a disease affecting approximately 200 million people worldwide. Along with several other important human parasites including trypanosomes and Plasmodium, schistosomes lack the de novo pathway for purine synthesis and depend exclusively on the salvage pathway for their purine requirements, making the latter an attractive target for drug development. Part of the pathway involves the conversion of inosine (or guanosine) into hypoxanthine (or guanine) together with ribose-1-phosphate (R1P) or vice versa. This inter-conversion is undertaken by the enzyme purine nucleoside phosphorylase (PNP) which has been used as the basis for the development of novel anti-malarials, conceptually validating this approach. It has been suggested that, during the reverse reaction, R1P binding to the enzyme would occur only as a consequence of conformational changes induced by hypoxanthine, thus making a binary PNP-R1P complex unlikely. Contradictory to this statement, a crystal structure of just such a binary complex involving the Schistosoma mansoni enzyme has been successfully obtained. The ligand shows an intricate hydrogen-bonding network in the phosphate and ribose binding sites and adds a further chapter to our knowledge which could be of value in the future development of selective inhibitors.
PloS one, 2018
Purine nucleoside phosphorylases (PNPs) play an important role in the blood fluke parasite Schistosoma mansoni as a key enzyme of the purine salvage pathway. Here we present the structural and kinetic characterization of a new PNP isoform from S. mansoni, SmPNP2. Thermofluorescence screening of different ligands suggested cytidine and cytosine are potential ligands. The binding of cytosine and cytidine were confirmed by isothermal titration calorimetry, with a KD of 27 μM for cytosine, and a KM of 76.3 μM for cytidine. SmPNP2 also displays catalytic activity against inosine and adenosine, making it the first described PNP with robust catalytic activity towards both pyrimidines and purines. Crystal structures of SmPNP2 with different ligands were obtained and comparison of these structures with the previously described S. mansoni PNP (SmPNP1) provided clues for the unique capacity of SmPNP2 to bind pyrimidines. When compared with the structure of SmPNP1, substitutions in the vicinity...
Acta Crystallographica Section D Biological Crystallography, 2010
Schistosomes are unable to synthesize purines de novo and depend exclusively on the salvage pathway for their purine requirements. It has been suggested that blockage of this pathway could lead to parasite death. The enzyme purine nucleoside phosphorylase (PNP) is one of its key components and molecules designed to inhibit the low-molecular-weight (LMW) PNPs, which include both the human and schistosome enzymes, are typically analogues of the natural substrates inosine and guanosine. Here, it is shown that adenosine both binds to Schistosoma mansoni PNP and behaves as a weak micromolar inhibitor of inosine phosphorolysis. Furthermore, the first crystal structures of complexes of an LMW PNP with adenosine and adenine are reported, together with those with inosine and hypoxanthine. These are used to propose a structural explanation for the selective binding of adenosine to some LMW PNPs but not to others. The results indicate that transition-state analogues based on adenosine or other 6-amino nucleosides should not be discounted as potential starting points for alternative inhibitors.
Structural bioinformatics study of PNP from Schistosoma mansoni
Biochemical and Biophysical Research Communications, 2004
The parasite Schistosoma mansoni lacks the de novo pathway for purine biosynthesis and depends on salvage pathways for its purine requirements. Schistosomiasis is endemic in 76 countries and territories and amongst the parasitic diseases ranks second after malaria in terms of social and economic impact and public health importance. The PNP is an attractive target for drug design and it has been submitted to extensive structure-based design. The atomic coordinates of the complex of human PNP with inosine were used as template for starting the modeling of PNP from S. mansoni complexed with inosine. Here we describe the model for the complex SmPNP-inosine and correlate the structure with differences in the affinity for inosine presented by human and S. mansoni PNPs.
Journal of the Brazilian Chemical Society, 2011
A enzima purina nucleosídeo fosforilase de Schistosoma mansoni (SmPNP) é um alvo molecular atrativo para o tratamento de importantes doenças infecciosas parasitárias, com especial ênfase para o seu papel na descoberta de novos fármacos contra a esquistossomose, uma doença tropical que afeta cerca de 200 milhões de pessoas em 74 áreas endêmicas no mundo todo. No presente trabalho, a potência inibitória foi determinada e estudos das relações quantitativas entre a estrutura e atividade (QSAR), baseados em descritores e fragmentos, foram desenvolvidos para uma série de 9-deazaguaninas que atuam como inibidores da SmPNP. Parâmetros estatísticos significantes (modelo baseado em descritor: r 2 = 0,79; q 2 = 0,62, r 2 pred = 0,52; e modelo baseado em fragmento: r 2 = 0,95; q 2 = 0,81; r 2 pred = 0,80) foram obtidos, indicando o potencial dos modelos para compostos ainda não testados. O modelo baseado em fragmento foi então usado para predizer a potência inibitória de um conjunto teste de compostos, e os valores preditos estão em boa concordância com os resultados experimentais. The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the treatment of major parasitic infectious diseases, with special emphasis on its role in the discovery of new drugs against schistosomiasis, a tropical disease that affects millions of people worldwide. In the present work, we have determined the inhibitory potency and developed descriptor-and fragment-based quantitative structure-activity relationships (QSAR) for a series of 9-deazaguanine analogs as inhibitors of SmPNP. Significant statistical parameters (descriptor-based model: r 2 = 0.79, q 2 = 0.62, r 2 pred = 0.52; and fragment-based model: r 2 = 0.95, q 2 = 0.81, r 2 pred = 0.80) were obtained, indicating the potential of the models for untested compounds. The fragment-based model was then used to predict the inhibitory potency of a test set of compounds, and the predicted values are in good agreement with the experimental results.
Chemical & pharmaceutical bulletin, 2001
Purine nucleoside phosphorylase (PNP, EC 2.4.2.1) is a key enzyme in the purine salvage and degradation pathway. 1) Inhibitors of PNP have potential therapeutic value in the treatment of T-cell proliferative diseases such as T-cell leukemias or lymphomas, for prevention of transplant rejection, and in the treatment of T-cell autoimmune diseases such as rheumatoid arthritis and lupus. 2,3) Despite the therapeutic potential of PNP inhibitors, which has been appreciated for more than fifteen years, and the several classes of PNP inhibitors that have been described in the literature, 4) only one has reached advanced clinical trials. Recently, we have determined values of K i and IC 50 for a series of inhibitors of purine nucleoside phosphorylase discovered by scientists at BioCryst Pharmaceuticals and developed useful QSAR models based on them. 6) These QSAR models are, however, less robust than one would like as a consequence of limited structural diversity and a clustering of many of the property values over a rather narrow range. We have now amplified our data set through the inclusion of 24 PNP inhibitors discovered by scientists at Parke-Davis Pharmaceuticals. These inhibitors provide the desired structural diversity and cover a greater range of property values with less clustering. In sum, the amplified data set is an improved data set for the purposes of QSAR model development. The results of modeling this data set are reported herein.