Identification of Thai isolates assigned to the genus Asaia based on 16S rDNA restriction analysis (original) (raw)

Asaia siamensis sp. nov., an acetic acid bacterium in the alpha-proteobacteria

International Journal of Systematic and Evolutionary Microbiology, 2001

Five bacterial strains were isolated from tropical flowers collected in Thailand and Indonesia by the enrichment culture approach for acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were located within the cluster of the genus Asaia. The isolates constituted a group separate from Asaia bogorensis on the basis of DNA relatedness values. Their DNA GMC contents were 586-597 mol %, with a range of 11 mol %, which were slightly lower than that of A. bogorensis (593-610 mol %), the type species of the genus Asaia. The isolates had morphological, physiological and biochemical characteristics similar to A. bogorensis strains, but the isolates did not produce acid from dulcitol. On the basis of the results obtained, the name Asaia siamensis sp. nov. is proposed for these isolates. Strain S60-1 T , isolated from a flower of crown flower (dok rak, Calotropis gigantea) collected in Bangkok, Thailand, was designated the type strain (l NRIC 0323 T l JCM 10715 T l IFO 16457 T).

Identification of Acetobacter, Gluconobacter and Asaia Strains Isolated in Thailand Based on 16S-23S rDNA ITS Restriction and 16S rDNA Sequence Analyses

Twenty-six strains of acetic acid bacteria were isolated from fruits, flowers and related materials collected in Thailand. They were divided into three genera, Acetobacter, Gluconobacter and Asaia, by phenotypic characterization and 16S rRNA gene sequence analyses. On the basis of 16S-23S rRNA gene internal transcribed spacer (16S-23S rDNA ITS) restriction and 16S rRNA gene sequence analyses, fourteen isolates assigned to the genus Acetobacter were divided into five groups: 1) Group 1A or A. tropicalis (one isolate); 2) Group 2A or A. orientalis (four isolates); 3) Group 3A or A. pasteurianus (five isolates); 4) Group 4A or A. syzygii (one isolate); and 5) Group 5A or A. ghanensis (three isolates). The eleven isolates assigned to the genus Gluconobacter were divided into three groups: 6) Group 1B or G. frateurii (four isolates); 7) Group 2B or G. japonicus (six isolates); and 8) Group 3B or unidentified (one isolate). The remaining isolate was placed into: 9) Group 1C or unidentified, which was assigned to the genus Asaia and considered to constitute a new species on the basis of the 16S rRNA gene sequence analysis and DNA-DNA hybridization.

IDENTIFICATION OF STRAINS ISOLATED IN THAILAND AND ASSIGNED TO THE GENERA KOZAKIA AND SWAMINATHANIA

Four isolates, isolated from fruit of sapodilla collected at Chantaburi and designated as CT8-1 and CT8-2, and isolated from seeds of ixora ("khem" in Thai, Ixora species) collected at Rayong and designated as SI15-1 and SI15-2, were examined taxonomically. The four isolates were selected from a total of 181 isolated acetic acid bacteria. Isolates CT8-1 and CT8-2 were non motile and produced a levan-like mucous polysaccharide from sucrose or D-fructose, but did not produce a water-soluble brown pigment from D-glucose on CaCO 3 -containing agar slants. The isolates produced acetic acid from ethanol and oxidized acetate and lactate to carbon dioxide and water, but the intensity of the acetate and lactate oxidation was weak. Their growth was not inhibited by 0.35 % acetic acid (v/v) at pH 3.5. The isolates did not grow on 30 % D-glucose (w/v), and utilization of methanol was not found. Isolates SI15-1 and SI15-2 had peritrichous flagella and grew in the presence of either 0.35 % acetic acid (v/v) at pH 3.5, 3 % NaCl (w/v), or 1 % KNO 3 (w/v). Acetate and lactate were oxidized to carbon dioxide and water, but the intensity was weak. The isolates grew on mannitol agar and glutamate agar as well as on 30 % Dglucose (w/v), but did not utilize methanol. The 16S rRNA gene sequence analysis and DNA-DNA hybridization indicated that isolates CT8-1 and CT8-2 and isolates SI15-1 and SI15-2 were unequivocally identified respectively as Kozakia baliensis and Swaminathania salitolerans.

Identification of Acetobacter, Gluconobacter, and Asaia Strains Isolated in Thailand Based on 16S-23S rRNA Gene Internal Transcribed Spacer Restriction and 16S rRNA Gene Sequence Analyses

Microbes and Environments, 2009

Twenty-six strains of acetic acid bacteria were isolated from fruits, flowers and related materials collected in Thailand. They were divided into three genera, Acetobacter, Gluconobacter and Asaia, by phenotypic characterization and 16S rRNA gene sequence analyses. On the basis of 16S-23S rRNA gene internal transcribed spacer (16S-23S rDNA ITS) restriction and 16S rRNA gene sequence analyses, fourteen isolates assigned to the genus Acetobacter were divided into five groups: 1) Group 1A or A. tropicalis (one isolate); 2) Group 2A or A. orientalis (four isolates); 3) Group 3A or A. pasteurianus (five isolates); 4) Group 4A or A. syzygii (one isolate); and 5) Group 5A or A. ghanensis (three isolates). The eleven isolates assigned to the genus Gluconobacter were divided into three groups: 6) Group 1B or G. frateurii (four isolates); 7) Group 2B or G. japonicus (six isolates); and 8) Group 3B or unidentified (one isolate). The remaining isolate was placed into: 9) Group 1C or unidentified, which was assigned to the genus Asaia and considered to constitute a new species on the basis of the 16S rRNA gene sequence analysis and DNA-DNA hybridization.

Asaia krungthepensis sp. nov., an acetic acid bacterium in the -Proteobacteria

INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2004

Three bacterial strains were isolated from flowers collected in Bangkok, Thailand, by an enrichment-culture approach for acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were located in the lineage of the genus Asaia but constituted a cluster separate from the type strains of Asaia bogorensis and Asaia siamensis. The DNA base composition of the isolates was 60?2-60?5 mol% G+C, with a range of 0?3 mol%. The isolates constituted a taxon separate from Asaia bogorensis and Asaia siamensis on the basis of DNA-DNA relatedness. The isolates had morphological, physiological, biochemical and chemotaxonomic characteristics similar to those of the type strains of Asaia bogorensis and Asaia siamensis, but the isolates grew on maltose. The major ubiquinone was Q 10 . On the basis of the results obtained, the name Asaia krungthepensis sp. nov. is proposed for the isolates. The type strain is isolate AA08 T (=BCC 12978 T =TISTR 1524 T =NBRC 100057 T =NRIC 0535 T ), which had a DNA G+C content of 60?3 mol% and was isolated from a heliconia flower ('paksaasawan' in Thai; Heliconia sp.) collected in Bangkok, Thailand.

Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the alpha-Proteobacteria

INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2000

Eight Gram-negative, aerobic, rod-shaped and peritrichously flagellated strains were isolated from flowers of the orchid tree (Bauhinia purpurea) and of plumbago (Plumbago auriculata), and from fermented glutinous rice, all collected in Indonesia. The enrichment culture approach for acetic acid bacteria was employed, involving use of sorbitol medium at pH 3.5. All isolates grew well at pH 3.0 and 30 degrees C. They did not oxidize ethanol to acetic acid except for one strain that oxidized ethanol weakly, and 0.35% acetic acid inhibited their growth completely. However, they oxidized acetate and lactate to carbon dioxide and water. The isolates grew well on mannitol agar and on glutamate agar, and assimilated ammonium sulfate for growth on vitamin-free glucose medium. The isolates produced acid from D-glucose, D-fructose, L-sorbose, dulcitol and glycerol. The quinone system was Q-10. DNA base composition ranged from 59.3 to 61.0 mol% G + C. Studies of DNA relatedness showed that the isolates constitute a single species. Phylogenetic analysis based on their 16S rRNA gene sequences indicated that the isolates are located in the acetic acid bacteria lineage, but distant from the genera Acetobacter, Gluconobacter, Acidomonas and Gluconacetobacter. On the basis of the above characteristics, the name Asaia bogorensis gen. nov., sp. nov. is proposed for these isolates. The type strain is isolate 71T (= NRIC 0311T = JCM 10569T).