A fully consistent Lie algebraic representation of quantum phase and number operators (original) (raw)

A consistent Lie algebraic representation of quantum phase and number operators

Mario Rasetti

arXiv (Cornell University), 2002

View PDFchevron_right

LETTER TO THE EDITOR: A fully consistent Lie algebraic representation of quantum phase and number operators

rasetti mario

Journal of Physics A-mathematical and General, 2004

View PDFchevron_right

Canonical transforms. III. Configuration and phase descriptions of quantum systems possessing an sl (2,R) dynamical algebra

Kurt Bernardo Wolf

Journal of Mathematical Physics, 1975

View PDFchevron_right

Linear canonical transformations and quantum phase: a unified canonical and algebraic approach

Tugrul Hakioglu

Journal of Physics A: Mathematical and General, 1999

View PDFchevron_right

On generalized phase operators for the quantum harmonic oscillator

Kumar Eswaran

Il Nuovo Cimento B Series 10, 1970

View PDFchevron_right

Admissible cyclic representations and an algebraic approach to quantum phase

Tugrul Hakioglu

Journal of Physics A: Mathematical and General, 1998

View PDFchevron_right

Introduction to quantum Lie algebras

Gustav Delius

Arxiv preprint q-alg/9605026, 1996

View PDFchevron_right

Finite-dimensional Schwinger basis, deformed symmetries, Wigner function, and an algebraic approach to quantum phase

Tugrul Hakioglu

Journal of Physics A: Mathematical and General, 1998

View PDFchevron_right

Positive Representations and Harmonic Analysis of Split Real Quantum Groups

Ivan Ip

View PDFchevron_right

Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems

M. Daoud

Journal of Physics A: Mathematical and Theoretical, 2010

View PDFchevron_right

Representation of the Quantum Plane, its Quantum Double and Harmonic Analysis on $ GL_q^+(2, R) $

Ivan Ip

Arxiv preprint arXiv:1108.5365, 2011

View PDFchevron_right

Refined Algebraic Quantization with the Triangular Subgroup of SL(2, ℝ)

Alberto Molgado

International Journal of Modern Physics D, 2005

View PDFchevron_right

The Moyal-Lie theory of phase space quantum mechanics

Tugrul Hakioglu

Journal of Physics A: Mathematical and General, 2001

View PDFchevron_right

On a quantum algebraic approach to a generalized phase space

David Bohm

Foundations of Physics, 1981

View PDFchevron_right

A connection between quantum Hilbert-space and classical phase-space operators by. D Campos, J D Urbina and C Viviescas

Diogenes Campos

View PDFchevron_right

Geometric phases for SU (3) representations and three level quantum systems

Gaurav Khanna

1997

View PDFchevron_right

Study on a Phase Space Representation of Quantum Theory

Rakotoson Hanitriarivo

2013

View PDFchevron_right

The structure of quantum Lie algebras for the classical series, and

Gustav Delius

Journal of Physics A: …, 1998

View PDFchevron_right

A quantum mechanical representation in phase space

John Frederick

The Journal of Chemical Physics, 1993

View PDFchevron_right

A Representation of Real and Complex Numbers in Quantum Theory

Paul Benioff

2005

View PDFchevron_right

Generalized phase-space representation of operators

John Klauder

Journal of Physics A: Mathematical and Theoretical, 2007

View PDFchevron_right

Refined algebraic quantisation with the triangular subgroup of SL(2,R)

Alberto Molgado

2004

View PDFchevron_right

Notes on qubit phase space and discrete symplectic structures

Etera Livine

Journal of Physics A: Mathematical and Theoretical, 2010

View PDFchevron_right

The canonical Kravchuk basis for discrete quantum mechanics

Kurt Bernardo Wolf

Journal of Physics A: Mathematical and General, 2000

View PDFchevron_right

On the phase operator

Marian Grabowski

Reports on Mathematical Physics, 1991

View PDFchevron_right

Schwinger, Pegg and Barnett approaches and a relationship between angular and Cartesian quantum descriptions

matilde ruzzi

Journal of Physics A: Mathematical and General, 2002

View PDFchevron_right

On a nonstandard two-parametric quantum algebra and its connections withU p, q (gl(2)) andU p, q(gl(1/1))

Ramaswamy Jagannathan

Zeitschrift f�r Physik C Particles and Fields, 1995

View PDFchevron_right

Transformation theory for phase-space representations of quantum mechanics

Paul Brumer

Physical Review A, 2000

View PDFchevron_right

Representations of two-qubit and ququart states via discrete Wigner functions

Marcelo Marchiolli

arXiv: Quantum Physics, 2019

View PDFchevron_right

Phase space quantum mechanics via frame quantization on finite groups

Job A. Nable

The 5th Innovation and Analytics Conference & Exhibition (IACE 2021)

View PDFchevron_right

The hyperbolic, the arithmetic and the quantum phase

Haret Rosu

Journal of Optics B: Quantum and Semiclassical Optics, 2004

View PDFchevron_right

Positive representations of split real quantum groups and future perspectives

Ivan Ip

Arxiv preprint arXiv:1111.1033, 2011

View PDFchevron_right