Gauged (2,2) sigma models and generalized Kähler geometry (original) (raw)

Generalized Kahler geometry and manifest N=(2,2) supersymmetric nonlinear sigma-models

Martin Rocek

Journal of High Energy Physics

View PDFchevron_right

Generalized Kähler geometry and manifest Script N = (2,2) supersymmetric nonlinear sigma-models

Rikard von Unge, Ulf Lindström

Journal of High Energy Physics, 2005

View PDFchevron_right

Two-dimensional supersymmetric sigma models on almost-product manifolds and non-geometry

Vid Stojevic

2010

View PDFchevron_right

Sigma models with non-commuting complex structures and extended supersymmetry

Ulf Lindström

2010

View PDFchevron_right

Generalized Kähler Geometry from Supersymmetric Sigma Models

Ulf Lindström

Letters in Mathematical Physics, 2006

View PDFchevron_right

A brief review of supersymmetric non-linear sigma models and generalized complex geometry

Ulf Lindström

2006

View PDFchevron_right

The geometry of supersymmetric sigma-models

Jan Troost

View PDFchevron_right

Wess–Zumino sigma models with non-Kählerian geometry

Kellogg Stelle

Classical and Quantum Gravity, 2003

View PDFchevron_right

Sigma models with off-shell N = (4, 4) supersymmetry and noncommuting complex structures

M. Göteman, Ulf Lindström

Journal of High Energy Physics, 2010

View PDFchevron_right

Homogeneous K�hler manifolds: Paving the way towards new supersymmetric sigma models

Michael Forger

Communications in Mathematical Physics, 1986

View PDFchevron_right

A topological sigma model of biKähler geometry

Roberto Zucchini

Journal of High Energy Physics, 2006

View PDFchevron_right

New supersymmetric sigma-model duality

Rikard von Unge

2010

View PDFchevron_right

Sigma models with non-commuting complex

M. Göteman

2016

View PDFchevron_right

Generalized Kähler geometry in (2, 1) superspace

Ulf Lindström

Journal of High Energy Physics, 2012

View PDFchevron_right

Generalized supersymmetric non-linear sigma models

Ulf Lindström

Physics Letters B, 2004

View PDFchevron_right

New supersymmetric σ-model duality

Rikard von Unge, Ulf Lindström

Journal of High Energy Physics, 2010

View PDFchevron_right

Wess Zumino sigma models with non-K�hlerian geometry

Kellogg Stelle

Class Quantum Gravity, 2003

View PDFchevron_right

Pseudo-Hyperkähler Geometry and Generalized Kähler Geometry

Ulf Lindström

Letters in Mathematical Physics, 2011

View PDFchevron_right

The quantum geometry of N = (2,2) non-linear σ-models

Jan Troost

Physics Letters B, 1997

View PDFchevron_right

Geometry and Duality in Supersymmetric sigma-Models

Cosmas Zachos

1996

View PDFchevron_right

Covariant Hamiltonians, sigma models and supersymmetry

Ulf Lindström

Proceedings of Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" — PoS(CORFU2019), 2020

View PDFchevron_right

Generic supersymmetric hyper-Kähler sigma models in

Sergey Krivonos

Physics Letters B, 2007

View PDFchevron_right

Semichiral fields on S 2 and generalized Kähler geometry

Jun Nian

Journal of High Energy Physics, 2016

View PDFchevron_right

Extended supersymmetry of semichiral sigma models in 4D

Ulf Lindström

Journal of High Energy Physics, 2015

View PDFchevron_right

Geometry and duality in supersymmetric σ-models

Thomas Curtright, Cosmas Zachos

View PDFchevron_right

Sigma models and complex geometry

Ulf Lindström

Proceedings of Proceedings of the Corfu Summer Institute 2011 — PoS(CORFU2011), 2012

View PDFchevron_right

BiHermitian supersymmetric quantum mechanics

Roberto Zucchini

Classical and Quantum Gravity, 2007

View PDFchevron_right

A sigma model field theoretic realization of Hitchin's generalized complex geometry

Roberto Zucchini

Journal of High Energy Physics, 2004

View PDFchevron_right

Supersymmetric Sigma Model Geometry

Ulf Lindström

Symmetry, 2012

View PDFchevron_right

New extended superconformal sigma models and quaternion Kähler manifolds

Rikard von Unge

Journal of High Energy Physics, 2009

View PDFchevron_right

Lectures on Special Kahler Geometry and Electric--Magnetic Duality Rotations

Pietro Fre

1995

View PDFchevron_right