Réductions de graphes et systèmes de Church-Rosser (original) (raw)

1981, RAIRO - Operations Research

https://doi.org/10.1051/RO/1981150201091

Sign up for access to the world's latest research

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Nouvelle approche de fouille de graphes AC-réduits fréquents

La fouille de graphes est devenue une piste de recherche intéressante et un défi réel en matière de fouille de données. Parmi les différentes familles de motifs de graphes, les graphes fréquents permettent une caractérisation intéressante des groupes de graphes, ainsi qu'une discrimination des différents graphes lors de la classification ou de la segmentation. A cause de la NP-complétude du test d'isomorphisme de sous-graphes et de l'immensité de l'espace de recherche, les algorithmes de fouille de graphes sont exponentiels en temps d'exécution et/ou occupation mémoire. Dans cet article, nous étudions un nouvel opérateur de projection polynomial nommé AC-projection basé sur une propriété clé du domaine de la programmation par contraintes, à savoir l'arc consistance. Cet opérateur est censé remplacer l'utilisation de l'isomorphisme de sous-graphes en établissant un biais sur la projection. Cette étude est suivie d'une évaluation expérimentale du pouvoir discriminant des patterns AC-réduits découverts.

Les graphes (-1)-critiques

Given a (directed) graph G=(V,A), a subset X of V is an interval of G provided that for any a, b\in X and x\in V-X, (a,x)\in A if and only if (b,x)\in A and (x,a)\in A if and only if (x,b)\in A. For example, \emptyset, \{x\} (x \in V) and V are intervals of G, called trivial intervals. A graph, all the intervals of which are trivial, is indecomposable; otherwise, it is decomposable. A vertex x of an indecomposable graph is critical if G-x is decomposable. In 1993, J.H. Schmerl and W.T. Trotter characterized the indecomposable graphs, all the vertices of which are critical, called critical graphs. In this article, we characterize the indecomposable graphs which admit a single non critical vertex, that we call (-1)-critical graphs.} This gives an answer to a question asked by Y. Boudabbous and P. Ille in a recent article studying the critical vertices in an indecomposable graph. Comment: 27 pages, to appear in Ars Combinatoria

Familles de graphes expanseurs et paires de Hecke

Comptes Rendus Mathematique, 2002

Reçu le 28 juin 2002 ; accepté le 9 juillet 2002 Note présentée par Étienne Ghys. Résumé Soient G un groupe et H un sous-groupe de G. Supposons que (G, H) est une paire de Hecke et que H est engendré par un ensemble fini symétrique à k générateurs. Alors G/H possède une structure naturelle de graphe (en général avec boucles et arêtes multiples) dont les composantes connexes constituent une famille (X i) i∈I de graphes finis connexes kréguliers. Nous indiquons des critères pour que la taille de ces graphes finis soit ou non bornée, ou tende vers l'infini. Lorsque la taille des X i tend vers l'infini, nous énonçons des critères pour que (X i) i∈I soit une famille de graphes expanseurs, ainsi que divers exemples.

Décompositions de graphes : quelques limites et obstructions

Http Www Theses Fr, 2011

Une thèse est une longue épopée enrichissante, parsemée de rencontres et de surprises, se terminant par une grande rétrospective du travail accompli : la rédaction. Les remerciements en sont la cerise, adressés à toutes les personnes ayant contribué à ce que la thèse puisse arriver à son terme dans les conditions qui sont les siennes. Mais est-il plus facile d'écrire les remerciements que le contenu principal du manuscrit ? Pas si sûr.. . Allez, je me lance ! Tout d'abord, j'adresse mes sincères remerciements à tous les membres de mon jury de thèse pour avoir accepté d'en être les membres (de mon jury de thèse) : à Michel Habib, qui m'a fait l'honneur de présider et animer avec brio la soutenance ; à Christophe Paul et Cyril Gavoille, qui ont accepté d'en être les rapporteurs, et dont les commentaires m'ont permis d'améliorer (si besoin encore) ce manuscrit ; à Mathieu Liedloff et Yann Vaxès, qui ont accepté de participer au jury de la soutenance, et de poser de judicieuses questions. Une thèse sans directeur de thèse, c'est comme un vélo sans guidon ! De surcroît lorsque le doctorant s'égare.. . De nombreux remerciements vont donc tout naturellement à Ioan Todinca, mon directeur de thèse, pour sa gentillesse, son expertise, ses conseils, et son important soutien durant mes trois années de thèse, y compris lorsque j'ai souhaité emprunter quelques fois des directions s'éloignant furtivement du sujet qu'il m'avait initialement confié. J'en profite pour remercier également les différents collègues de recherche rencontrés au fil de ma thèse, qu'ils soient locaux ou non, et qui ont contribué (et contribuent encore) significativement à la richesse que m'apporte la recherche scientifique. Pour ne pas en oublier, je ne prendrai pas le risque de vouloir les citer ; ne m'en voulez pas, vous vous reconnaissez forcément ! Et l'environnement de travail dans tout ça ? Il ne suffit pas d'avoir un bon sujet pour faire une bonne thèse ! Un grand merci à chacun des collègues enseignants, chercheurs ou administratifs, du LIFO, de l'IUT d'Orléans et du Département Informatique de l'UFR Sciences ; l'ambiance aussi bien professionnelle que sociale y est idéale, et les innombrables pauses passées ensembles y sont sans nul doute pour quelque chose. Je remercie notamment Christel Vrain et Jérôme Durand-Lose, directeurs successifs du LIFO, pour leur accueil chaleureux au sein du laboratoire ; Sébastien Limet, chef du département informatique de l'IUT d'Orléans, pour sa gentillesse durant mes trois années passées en tant que moniteur au sein de son département ; Ali Ed-Dbali, chef du département informatique de l'UFR Sciences, où mon début de carrière d'enseignant s'est poursuivi. Il est une catégorie particulière parmi les collègues de travail : les doctorants. Compagnons de voyage et d'expériences, nous sommes amenés à partager beaucoup de choses. Que de moments inoubliables passés avec les doctorants du LIFO ou de l'ADSO ! Faisons fi des risques de la liste non exhaustive, pour en citer quelques-uns (dans le désordre alphabétique et chronologique) : Matthieu Lopez (l'incontournable), Julien Tesson (le motard aventurier), Maxime Senot (le matinal franc-comtois), Simon Petitjean (le footeux culannais), Hélène Coullon (la hockeyeuse métalleuse), Anthony Della Roca (le nimois incognito), Nicolas Dugué (le jeune épique), Joeffrey Légaux (le belge toulousain), Jacques-Henri Sublemontier (le cynophile), Ahmed Turki (le réalisateur), Thang Quang Dinh (le co-bureau), Jérémie Vautard (Mr Babybel), Claire Herrbach (l'initiative), Paméla Gasse (la confidente),.. . Je savais bien que j'allais en oublier ! Je pense également aux étudiants que j'ai eu le plaisir d'encadrer durant ces quelques années, ou que j'ai croisé au détour d'un couloir, ou à la FIFO ; certains sont même devenus des amis ! Là encore, il serait périlleux de vouloir tous les citer ; le principal, c'est que je pense à vous ! À toute les personnes qui ont apporté leur pierre indispensable à l'édifice, citées ou non précédemment (notamment toutes celles extérieures à l'université) : je ne pourrais vous citer toutes et tous, mais sachez que vous avez vous aussi votre part d'inoubliable dans cette aventure unique ! « Tu veux faire une thèse ? Mais c'est encore trois ans d'études !-Oui, au moins.. . » Les choix d'études peuvent parfois être difficiles pour notre entourage, surtout lorsqu'il s'agit d'y greffer encore et toujours des années supplémentaires. J'ai la chance d'avoir une famille qui m'a toujours soutenue (et supportée) dans mes choix d'études. Je leur dois sans aucun doute d'être arrivé jusque-là, avec succès ! C'est ainsi que s'achève cette thèse ! Me voilà arrivé au bout de cette épopée. Ma chère Kris, ma chère Same, c'est aussi grâce à vous ; Ma pensée toute spéciale vous est dédiée.

Systèmes de Référence --Systèmes Projectifs

Many geodetic works currently exist on the surface of the globe, which have developed through regional networks, usually each having a fundamental point, where the astronomical data ($\varphi$= latitude,$\lambda=$ longitude,$Az=$ azimuth) of a reference are confused with the counterparts geodetic data. The comparison of 2 networks, and, step by step, of all the connectable networks, can be done by the analysis of the coordinates of their common points. To this end, we can use 3 types of coordinates: - Geographical coordinates = simple method, but not very convenient for different ellipsoids. - Three-dimensional cartesian coordinates, the most rigorous method in the case where the so-called geoid correction has been made. - Coordinates in conformal projection. An analysis of the main formulas that can be used is studied by the first author in this article.

Graphes et couplages en Coq

2015

Nous proposons une formalisation en Coq des graphes orientes et non orientes et des notions associees. La bibliotheque developpee offre non seulement l'expressivite requise pour exprimer et demontrer des proprietes sur les graphes mais aussi une implantation purement fonctionnelle permettant de mettre en oeuvre efficacement les algorithmes de graphe. Nous specifions ensuite a l'aide de cette bibliotheque les notions de couplage et d'ensemble de sommets couvrant et developpons un verificateur formellement verifie dont l'objectif est de certifier le resultat d'un fonction qui calcule un couplage maximal. Le code executable de ce verificateur est obtenu grâce au mecanisme d'extraction de Coq. Ce travail est une premiere contribution d'un projet plus ambitieux qui concerne le developpement d'un algorithme de filtrage formellement verifie pour la contrainte de difference (alldiff) pour des domaines finis. Ce dernier algorithme utilise de nombreuses manipul...

Diagramme de Laguerre

Comptes Rendus Mécanique, 2005

Reçu le 17 novembre 2004 ; accepté après révision le 19 juillet 2005 Disponible sur Internet le 31 août 2005 Présenté par Évariste Sanchez-Palencia

Filtrage basÈ sur des propriÈtÈs de graphes

Cet article présente un schéma de filtrage générique, basé sur la description de contraintes globales sous la forme de propriétés de graphes. Cette description est définie par un réseau de contraintes binaires et une liste de propriétés de graphe élémentaires : chaque solution de la contrainte globale correspond à un sous-graphe du réseau initial, dans lequel ne sont retenues que les contraintes binaires satisfaites. Ce sous-graphe doit vérifier les propriétés de graphe qui définissent la contrainte. Le filtrage consiste en l'identification des arcs du réseau qui appartiennent ou non aux sous-graphes solution. L'objectif est de construire, à côté du catalogue de contraintes, une liste de règles de filtrage systématiques. Ces règles sont basées sur un ensemble limité de propriétés. Elles s'appliquent à toutes les contraintes du catalogue décrites à l'aide de ces propriétés. Nous illustrons ce principe sur les propriétés de graphe les plus usuelles, et nous expérimento...

Sur la réductibilité des graphes de contraintes géométriques

2017

La modelisation geometrique par contraintes dont les applications interessent des communautes issues de divers domaines tels l'ingenierie mecanique, la conception assistee par ordinateur, le calcul symbolique ou la chimie moleculaire est maintenant integre dans les outils standards de modelisation. Dans cette discipline une forme geometrique est specifiee par les relations que doivent verifier les composants de cette forme au lieu de specifier explicitement ces composants. Le but de la resolution est de deduire la forme repondant a toutes ces contraintes. Diverses methodes ont ete proposees pour resoudre ce probleme. Nous nous interesserons specifiquement aux methodes dites graphiques ou basees-graphes avec application a l'espace bidimensionnel.

Croisements sémantiques dans les graphes petits mondes

2004

Résumé Ce mémoire présente la contribution apportée au projet de formalisation du sens entrepris par le groupe de recherche DiLan. Apres un rappel des notions essentielles et un bref état de l'art, nous y présentons les outils pour l'extraction de graphes et les méthodes pour réaliser des croisements sémantiques entre un verbe et un noma l'intérieur du graphe du dictionnaire, développés au cours du stage. Les résultats de ces méthodes sont ensuite brievement comparés et des perspectives d'application entrevues.

Revêtements Étales Abéliens Courants sur les Graphes et Réduction Semi-Stable des courbes

Manuscripta Mathematica, 1996

Let R be a strictly henselian discrete valuation ring with residue characteristic p. Let 2(be a semi-stable R-curve with smooth and geometrically connected generic fibre X := X,. Let F be the intersection graph of the special fibre A',. Using currents on F we give a description of a semi-stable model for cyclic dtale coverings of X of degree prime to p. SAI'DI, Rev6tements /~tales Abdliens A'k :-X • R k de A', se relive de mani~re unique (~ isomorphisme pros), en un rev~tement ~tale de ,12, et induit donc un rev~tement ~tale au-dessus de X. En termes de groupe fondamental, eela ce traduit par l'existence d'un homomorphisme surjectif de spdcialisation : 7rl (X)-+ zrl (A~k). oh X := X x KIf (cf. [7], expos~ X, cor. 2.3, p.269). Dans le eas de bonne rdduetion, c'est h dire le cas oh X possbde un modble ,11." propre, et lisse sur R. on montre en utilisant le lemme d'Abhyankar (cf. [7], expos~ X, lemme 3.6, p.279), et le th6orbme de puret~ de Zm'iski-Nagata (cf. [7], expos~ X, 3.1, p.275), que tout rev~tement ~tale galoisien }"-+ X, de groupe G d'ordre premier 5. p, se prolonge (aprbs extension finie ~ventuelle, mod~r~e de R) en un rev~tement ~tale 3"-+ A', qui est galoisien de groupe G. En particulier 3; est lisse, et la courbe }" a donc potentiellement bonne r~duction. En termes de groupe fondamental, l'homomorphisme de sp~eialisation ci-dessus induit un homomorphisme : zra(.-~'z) (p)-+ ~rl (2c'~)(p), entre les parties premibres ~ p, qui dans le cas oh A' est lisse est un isomorphisme. Dans ee travail (dont les r~sultats ont ~t~s annonc~s dans [12]), on suppose que la courbe X poss~de un module semi-stable A" sur R (un tel module existe, aprbs extension finie ~ventuelle de R [3]), et on ~tudie la r~duction semi-stable des r de X, oh nest un entier positif premier ~t p := car(k) (cette ~tude a dt4 initi~e en utilisant les m~thodes de la g4om~trie rigide, par Van der Put [16], dans le cas des courbes de Mumford). A la fibre sp4eiale A'k du module semi-stable .u on associe un graphe d'interseetion F, dont les sommets sont les composantes irr~ductibles de ~'~, et les arfites sont d6finies par les points doubles de A'~. Le Z-module C(F, G) des courants de F, ~t valeurs dans un groupe abdlien G, est d4fini comme 4tant l'ensemble des fonctions c sur les arfites orient4es de F, h valeurs dans G, telles que : (i) c(e) =-c(g), pour toute ar~te orient6e e de F, et son ar~te inverse g. (ii) Pour tout sommet a de I" fixd, on a : ~c(e) = 0, ohlasommeest prise sur routes les arfites orient6es e de F, d'origine le sommet a. I1 existe un isonmrphisme eanonique (cf. [17]) de C(F,Z) sur rr~(F) := l'ab6lianis~ du groupe fondamental topologique du graphe F. Le r4sultat principal de ce travail est le suivant : Th{or~lne 4.3. Soit n un entier positifpremier ~ p = car(k). On ales propridtds suivantes : (a) B existe un homomorphisme canonique :

Réduction fonctionnelle et réduction logique

RESUME: Kim attribue aux émergentistes un modèle de « réduction logique » dans lequel la prédiction ou l'explication d'une occurrence de la propriété réduite ne requiert, outre des informations sur le niveau réducteur, que des principes logiques et mathématiques. Sur la base de cette interprétation, je conteste deux thèses de Kim. La première concerne la légitimité du modèle émergentiste de réduction. J'essaie de montrer à l'exemple de l'addition des masses que l'adoption de la réduction logique rend irréductibles certaines propriétés clairement réductibles. La deuxième est la thèse selon laquelle la réduction fonctionnelle correspond aux exigences émergentistes sur la réduction. Telle que Kim la caractérise, la réduction fonctionnelle comporte, outre une définition fonctionnelle de la propriété à réduire, l'indication des propriétés réalisatrices. Or cette information qui correspond à la découverte d'une loi de correspondance (locale) est empirique et non seulement logique.

Etats graphes et calcul quantique

2007

Résumé Quelles sont les ressources minimales nécessairesa un calcul quantique universel? Cette simple question est l'une des plus fondamentales abordées pour la construction d'ordinateur quantique, et c'est l'une des questions les plus étudiées au sein de l'informatique quantique. En 2000, Raussendorf and Briegel [3] ont proposé un nouveau modele de calcul quantique. Ils ont montré que si certains états quantiques initiaux, appelés états graphes, sont fournis, alors la simple capacité d'appliquer des mesures sur 1 qubit ...

(Master Thesis) Etude et Comparaison des algorithmes de réduction de graphes pour la vérication structurelle des Workflows

Dans le contexte d'analyse/ré-ingénierie des modèles de procédés (BPA - Business Process Analysis/BPR - Business Process Reegineering), l'objectif de ce projet de Master MRGI est d'étudier les méthodes, outils formels et systèmes de validation structurelle des modèles de procédés. L'intérêt de la validation structurelle des modèles de procédés est incontestable. En effet, le déploiement de procédés non validés peut conduire les applications à base de ces procédés à des états d'incohérence et peut même provoquer des pannes très critiques sans la moindre possibilité de reprise. Plusieurs méthodes de validation structurelle de modèles de procédés ont été développées par des travaux de recherche divers : (1) validation structurelle à base de réseau de Pétri, (2) validation structurelle à base de parcours de graphe, (3) validation structurelle à base de réduction de graphe ainsi que d'autres approche hybrides combinant plus qu'une seule technique et stratégie. En contre partie plusieurs langages de normalisation des processus on pu voir le jour que ce soit pour la normalisation des processus métiers tel que BPMN ou pour la normalisation des processus exécutables tels que JPDL, XPDL et BPEL. Notre travail consiste en une proposition et étude de performance d'un nouvel algorithme de vérification structurelle de workflows à base de réduction de graphes, qui sera appliqué sur un langage standard de procédés métiers via un nouvel adaptateur de modèles de workflows que nous avons proposé et intégré au prototype WorkfowChecker du moteur WorkflowMiner. Notre nouvel algorithme consiste en une réduction, classification, filtrage et parcours de graphes. Autrement dit notre approche a comme objectif de minimiser, le plus possible, le nombre de noeuds à parcourir afin d'améliorer la performance.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.