Atlas of phylogenetic data for entelegyne spiders (Araneae: Araneomorphae: Entelegynae) with comments on their phylogeny (original) (raw)

aTOWARDS A PHYLOGENY OF ENTELEGYNE SPIDERS (ARANEAE, ARANEOMORPHAE, ENTELEGYNAE)

2000

We propose a phylogeny for all entelegyne families with cribellate members based on a matrix of 137 characters scored for 43 exemplar taxa and analyzed under parsimony. The cladogram confirms the monophyly of Neocribellatae, Araneoclada, Entelegynae, and Orbiculariae. Lycosoidea, Amaurobiidae and some included subfamilies, Dictynoidea, and Amaurobioidea (sensu Forster & Wilton 1973) are polyphyletic. Phyxelidinae Lehtinen is raised to family

Phylogeny of entelegyne spiders: Affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae)

Molecular Phylogenetics and Evolution, 2010

Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery of the male decades later brought surprises, especially in the morphology of the male pedipalp, which features (among other things) a retrolateral tibial apophysis (RTA). The presence of an RTA is synapomorphic for a large clade of spiders exclusive of Eresidae. A molecular data matrix based on four loci was constructed to test two alternative hypotheses: (1) penestomines are eresids and the RTA is convergent, or (2) penestomines belong within the RTA clade. Taxon sampling concentrated on the Eresidae and the RTA clade, especially outside of the Dionycha and Lycosoidea. Evolution of the cribellum, conventionally characterized as a primitive araneomorph spinning organ lost multiple times, is explored. Parsimony optimization indicates repeated appearances of the cribellum. Exploration of asymmetric rates of loss and gain in both a likelihood framework and using a Sankoff matrix under parsimony reveals that cribellum homology is supported when losses are two times more likely than gains. We suggest that when complicated characters appear (under parsimony optimization) to evolve multiple times, investigators should consider alternative reconstructions featuring a relatively high rate of loss. Evolution of other morphological characters is also investigated. The results imply revised circumscription of some RTA-clade families, including Agelenidae, Amaurobiidae, Cybaeidae, Dictynidae and Hahniidae. Some nomenclatural changes are formally proposed here; others await further investigation. The family Penestomidae (NEW RANK) is established. Tamgrinia, not Neoramia, is the cribellate sister clade of the ecribellate Agelenidae. Tamgrinia and the subfamily Coelotinae are transferred from the family Amaurobiidae to the family Agelenidae. Zanomys and its relatives are not coelotines but belong to a clade tentatively identified as Macrobuninae.

Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae). Supplementary data: Figs. S1-S7, four alignments in Nexus format

Molecular Phylogenetics and Evolution, 2010

Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery of the male decades later brought surprises, especially in the morphology of the male pedipalp, which features (among other things) a retrolateral tibial apophysis (RTA). The presence of an RTA is synapomorphic for a large clade of spiders exclusive of Eresidae. A molecular data matrix based on four loci was constructed to test two alternative hypotheses: (1) penestomines are eresids and the RTA is convergent, or (2) penestomines belong within the RTA clade. Taxon sampling concentrated on the Eresidae and the RTA clade, especially outside of the Dionycha and Lycosoidea. Evolution of the cribellum, conventionally characterized as a primitive araneomorph spinning organ lost multiple times, is explored. Parsimony optimization indicates repeated appearances of the cribellum. Exploration of asymmetric rates of loss and gain in both a likelihood framework and using a Sankoff matrix under parsimony reveals that cribellum homology is supported when losses are two times more likely than gains. We suggest that when complicated characters appear (under parsimony optimization) to evolve multiple times, investigators should consider alternative reconstructions featuring a relatively high rate of loss. Evolution of other morphological characters is also investigated. The results imply revised circumscription of some RTA-clade families, including Agelenidae, Amaurobiidae, Cybaeidae, Dictynidae and Hahniidae. Some nomenclatural changes are formally proposed here; others await further investigation. The family Penestomidae (NEW RANK) is established. Tamgrinia, not Neoramia, is the cribellate sister clade of the ecribellate Agelenidae. Tamgrinia and the subfamily Coelotinae are transferred from the family Amaurobiidae to the family Agelenidae. Zanomys and its relatives are not coelotines but belong to a clade tentatively identified as Macrobuninae.

Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea)

Cladistics, 2016

We test the limits of the spider superfamily Araneoidea and reconstruct its interfamilial relationships using standard molecular markers. The taxon sample (363 terminals) comprises for the first time representatives of all araneoid families, including the first molecular data of the family Synaphridae. We use the resulting phylogenetic framework to study web evolution in araneoids. Araneoidea is monophyletic and sister to Nicodamoidea rank. n. Orbiculariae are not monophyletic and also include the RTA clade, Oecobiidae and Hersiliidae. Deinopoidea is paraphyletic with respect to a lineage that includes the RTA clade, Hersiliidae and Oecobiidae. The cribellate orb-weaving family Uloboridae is monophyletic and is sister group to a lineage that includes the RTA Clade, Hersiliidae and Oecobiidae. The monophyly of most Araneoidea families is well supported, with a few exceptions. Anapidae includes holarchaeids but the family remains diphyletic even if Holarchaea is considered an anapid. The orb-web is ancient, having evolved by the early Jurassic; a single origin of the orb with multiple "losses" is implied by our analyses. By the late Jurassic, the orb-web had already been transformed into different architectures, but the ancestors of the RTA clade probably built orb-webs. We also find further support for a single origin of the cribellum and multiple independent losses. The following taxonomic and nomenclatural changes are proposed: the cribellate and ecribellate nicodamids are grouped in the superfamily Nicodamoidea rank n. (Megadictynidae rank res. and Nicodamidae stat. n.). Araneoidea includes 17 families with the following changes: Araneidae is recircumscribed to include nephilines, Nephilinae rank res., Arkyidae rank n., Physoglenidae rank n., Synotaxidae is limited to the genus Synotaxus, Pararchaeidae is a junior synonym of Malkaridae (syn. n.), Holarchaeidae of Anapidae (syn. n.) and Sinopimoidae of Linyphiidae (syn. n.).

Phylogenetic placement of pelican spiders (Archaeidae, Araneae), with insight into evolution of the “neck” and predatory behaviours of the superfamily Palpimanoidea

Cladistics, 2012

Phylogenetic relationships among archaeid spider lineages, as well as the placement of archaeids within the Araneomorphae, present a problem in the systematics of spiders. We investigate these relationships by broadly sampling taxa from the Araneomorphae and superfamily Palpimanoidea, as well as from extant and fossil archaeid lineages. Using parsimony and Bayesian methods we perform a total-evidence analysis that includes 126 morphological characters and over 4000 bases from one mitochondrial and three nuclear molecular markers. Phylogenetic analysis results in a delimitation of the superfamily Palpimanoidea to contain five families: Archaeidae, Mecysmaucheniidae, Stenochilidae, Palpimanidae and Huttoniidae. We also find the extant archaeids, which are restricted to the southern hemisphere, to be monophyletic, with the fossil archaeids paraphyletic. This phylogenetic framework is then used to interpret a novel morphological character, the highly modified and elevated cephalic area and elongated chelicerae (jaws), coupled with prey choice observations in the field and observations of chelicerae movements during predatory attacks. We conclude that the evolution of the elevated cephalic area, which reoriented the chelicerae muscles, led to highly manoeuvrable chelicerae and associated novel prey capture strategies. All members of Palpimanoidea appear to have modifications to the cephalic area, such as a diastema or sclerotization around the chelicerae bases, and furthermore, members appear to have evolved prey specialization.

Family ties: molecular phylogeny of crab spiders (Araneae: Thomisidae)

Cladistics, 2008

The first quantitative phylogenetic analysis of three sequenced genes (16S rRNA, cytochrome c oxidase subunit I, histone 3) of 25 genera of crab spiders and 11 outgroups supports the monophyly of Thomisidae. Four lineages within Thomisidae are recovered. They are informally named here as the Borboropactus clade, Epidius clade, Stephanopis clade and the Thomisus clade, pending detailed morphology based cladistic work. The Thomisus clade is recovered as a strongly supported monophyletic group with a minimal genetic divergence. Philodromidae previously widely considered a subfamily of Thomisidae do not group within thomisids and is excluded from Thomisidae. However, Aphantochilinae previously generally considered as a separate family falls within the Thomisus clade and is included in Thomisidae. The recently proposed new family Borboropactidae is rejected, as it is paraphyletic.