Tabebuia donnell-smithii Rose growth inoculated with mycorrhizal fungi and Azospirillum brasilense (original) (raw)

Crecimiento de Tabebuia donnell-smithii Rose inoculada con hongos micorrizogenos arbusculares y rizobacterias

Revista Mexicana de Ciencias Forestales, 2017

Tabebuia donnell-smithii es un árbol maderable con importancia económica y ecológica en las regiones tropicales de México, cuyas poblaciones naturales han disminuido, debido, entre otras razones, a su lento crecimiento durante su establecimiento. Se investigó en plantas de Tabebuia el efecto en su crecimiento y nutrición de la inoculación con Rhizophagus intraradices, Azospirillum brasilense y Pseudomonas fluorescens. El hongo y las bacterias se aplicaron a las semillas en combinaciones de dos o tres de los siguientes microorganismos: A. brasilense 9 x 10 6 UFC g de turba-1 , R. intraradices con 40 esporas g de suelo estéril-1 y raíces colonizadas al 95 % y P. fluorescens con 9 x 10 6 UFC g de turba-1 más el testigo. Se sembraron en macetas con una mezcla no estéril de suelo Andosol mólico y arena de río lavada, 1:1(v/v). En total se establecieron cinco tratamientos, con cinco repeticiones distribuidas en un diseño completamente al azar. Se realizaron cinco muestreos destructivos: el primero a los 45 días después de la siembra y los siguientes cada 28 días. Se registraron variables morfológicas y fisiológicas del rendimiento. Los tratamientos incrementaron el crecimiento de las plantas, con excepción de las dos bacterias juntas después de 158 días. El correspondiente a P. fluorescens-R. intraradices y el de los tres microorganismos indujeron más biomasa en el mayor número de componentes morfológicos y fisiológicos del rendimiento. El contenido más alto de N y P en el tejido vegetal se obtuvo con los tres microorganismos y con la combinación R. intraradices-A. brasilense.

Effect of Azospirillum inoculants on arbuscular mycorrhiza establishment in wheat and maize plants

Biology and Fertility of Soils, 2005

Plant growth-promoting rhizobacteria and arbuscular mycorrhizal (AM) fungi represent two main groups of beneficial microorganisms of the rhizosphere. The role of different strains of Azospirillum on AM fungi development was evaluated by measuring the percentage of AM colonisation of the root system in durum wheat and maize plants, grown under both greenhouse and field conditions. The effect of wild-type Azospirillum brasilense strain Sp245 and genetically modified (GM) derivatives overproducing indole-3-acetic acid was assessed at greenhouse level in (1) three different cultivars of durum wheat, in the presence of indigenous AM fungi and (2) maize plants artificially inoculated with Glomus mosseae and Glomus macrocarpum. In addition, the establishment of natural AM fungal symbiosis was evaluated using Azospirillum lipoferum CRT1 in maize plants at field level. Despite the stimulatory effect of the different Azospirillum inocula on root growth, no significant differences in AM colonisation were found, independently of the AM fungus involved, either in wheat or in maize plants. Similarly, GM A. brasilense, which strongly stimulates root development, did not affect AM formation. Although these results were obtained in conditions in which the mycorrhization rate was moderate (15–30%), overall considered they indicate that the use of wild-type or GM Azospirillum phytostimulators does not alter mycorrhization.

Growth Response of Two Species of Zizyphus to Inoculation with Arbuscular Mycorrhizal Fungi

Responses of two Zizyphus species of (Zizyphus spinachristi L. and Z. nummularia Burm.f.) to inoculation with and without arbuscular mycorrhizal fungi were investigated in a greenhouse over a 12 weeks period. Mycorrhizal inoculation significantly increased the biomass, root development (volume, surface area, diameter and number of tips), and photosynthetic pigments of both species in comparison to non-mycorrhizal plants. Such increases were related to the intensity of mycorrhizal infection in the root. Z. spina-christi was found to be more dependent on mycorrhizal fungi for its growth than Z. nummularia. These findings indicate that mycorrhizal inoculation can be a suitable way (biofertilizer agents) to improve growth and root development of tropical Zizyphus plants, particularly in poor soils.

Hormonal Concentration and Growth in Chili Plants Inoculated with Several Mycorrhizal Fungus, Evaluated in Different Steps

HortScience, 2004

The contribution of arbuscular endomycorrhizal fungus (AMF) on hormonal levels increase in chili plants, at different steps is currently unknown. In this experiment was evaluated the effect of Glomus sp. Zac-19, G. etunicatum and G. intraradices, inoculation mirasol and ancho cultivars, under greenhouse conditions. Plants were growing in pots containing 1 kg of substrate (3 sand: 1 soil ratio). The effect was measured on fresh fruit production and indolacetic acid, giberellin GA3 and 6-aminopurine concentration. Also plant parameters measured were: plant height, foliar area, stem diameter, root length, aerial fresh weight, total fresh weight, fruit weight and mycorrhizal colonization. All treatments were imposed using 16 replications in a full random design. Results shown that mycorrhizal colonization average of the three fungus was 44% in mirasol cultivar y 42% in ancho cultivar. Mycorrhizal colonization had an effect on growth and development in both cultivars, expressed in a grea...

Effect of mycorrhizae on seedlings of six endemic Mimosa L. species (Leguminosae–Mimosoideae) from the semi-arid Tehuacán–Cuicatlán Valley, Mexico

Mimosa is an important genus of legumes in arid and semi-arid ecosystems of the world, but scarce information is available about its interaction with microbial symbionts. In Mexico, there are no reports on the responsive of endemic Mimosa species to arbuscular mycorrhizal (AM) fungal colonization. In this study, the AM association with seedlings of six endemic Mimosa species, M. adenantheroides, M. calcicola, M. lacerata, M. luisana, M. polyantha and M. texana var. filipes, is reported. Field conditions were simulated in the greenhouse. Seeds were collected from plants and soil from the localities where the species occur within the semi-arid Tehuaca ´ n–Cuicatla ´ n Valley, Mexico. Four treatments were applied: (1) control, (2) benomyl, (3) phosphorus, and (4) benomyl plus phosphorus. Mycorrhizal seedlings of five species, M. adenantheroides, M. lacerata, M. luisana, M. polyantha and M. texana var. filipes, showed a higher shoot and total dry weight than non-mycorrhizal seedlings. The only species that did not show any difference between mycorrhizal and non-mycorrhizal seedling performance was M. calcicola. M. luisana, M. polyantha and M. texana var. filipes had a higher root/shoot ratio; in general, benomyl treatments promoted seedling biomass allocation to the root, while control, phosphorus and benomyl plus phosphorus treatments decrease root/shoot ratio. Shoot P content was significantly higher in mycorrhizal than in non-mycorrhizal plants, although no significant differences were found for M. adenantheroides in all treatments. Benomyl and benomyl plus phosphorus treatments reduced AM colonization in all the species under study. Benomyl significantly reduced the number of N -fixing root nodules, while the phosphorus treatment generally stimulated nodulation. The species M. lacerata, M. luisana, M. polyantha and M. texana var. filipes had a high mycorrhizal dependency index indicating that plant growth was strongly increased by arbuscular mycorrhiza activity. Our results indicate that the response of all Mimosa species to mycorrhization was highly variable. To our knowledge, this is the first report about the effect of AM fungi and phosphorus on Mimosa species, which may be useful in biodiversity and soil conservation programs.

Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants

Oecologia, 1990

An experiment was conducted to determine whether wild accessions and cultivars of Lycopersicon esculentum Mill. differed in inherent morphological, physiological or phenological traits and whether such differences would result in variation in response to vesicular-arbuscular mycorrhizal infection. While distinctions between wild accessions and cultivars were apparent (the cultivars generally had higher phosphorus use efficiencies and shorter lifespans than the wild accessions) and the cultivars were, as a group, more responsive to mycorrhizal infection than the wild accessions, there was significant variation among wild accessions and among cultivars in response to infection. Regardless of cultivation status, non-mycorrhizal plant root density was significantly negatively correlated with response to infection. Phosphorus use efficiency was generally not significantly correlated with response to infection. Mycorrhizal infection decreased phosphorus use efficiency in all accessions, but had variable effects on root density, depending upon accession and time. Finally, the vegetative response was not necessarily of the same magnitude as the reproductive response.

Growth of Leucaena leucocephala (Lam.) de Wit biofertilized with arbuscular mycorrhizal fungi in the nursery

Revista Chapingo Serie Ciencias Forestales y del Ambiente, 2017

Introduction: Leucaena leucocephala (Lam.) de Wit is native to tropical America. The root system of the species is associated with microorganisms that improve nutrition and growth. Objective: To evaluate the effect of arbuscular mycorrhizal fungi (AMF) collections on the phosphorus (P) content and growth of L. leucocephala in the nursery. Materials and methods: The seeds were sown and six treatments were applied: Rhizophagus intraradices (Schenck & Sm.) Walker & Schüßler (1), the collections "Caracoles" (2), "Rosario Izapa" (3), "Té limón" (4) and "San Rafael" (5), fertilization 15 N-15 P-15 K (6) and a control. Morphological and physiological variables, root colonization and P content were recorded at 120 days. Data were subjected to an analysis of variance and Tukey's range test (P ≤ 0.05). Results and discussion: AMF improved plant characteristics in comparison with the control and fertilization. Rhizophagus intraradices caused the highest growth values in the aerial part, mycorrhizal colonization and P content, and the lowest growth in the root system. The "Caracoles" and "Rosario Izapa" isolates promoted height, root biomass and P content higher than "Té limón" and "San Rafael". Conclusion: AMF allow decreasing chemical fertilization without detriment to the growth of L. leucocephala. Resumen Introducción: Leucaena leucocephala (Lam.) de Wit es nativa de América tropical. El sistema radical de la especie se asocia a microorganismos que mejoran la nutrición y el crecimiento. Objetivo: Evaluar el efecto de recolectas de hongos micorrízicos arbusculares (HMA) sobre el contenido de fósforo (P) y crecimiento de L. leucocephala en vivero. Materiales y métodos: Las semillas se sembraron y se aplicaron seis tratamientos: Rhizophagus intraradices (Schenck & Sm.) Walker & Schüßler (1), las recolectas "Caracoles" (2), "Rosario Izapa" (3), "Té limón" (4) y "San Rafael" (5), fertilización 15 N-15 P-15 K (6) y un testigo. Las variables morfológicas y fisiológicas, colonización radical y contenido de P se registraron a los 120 días. Los datos se sometieron a un análisis de varianza y comparación de medias (Tukey, P ≤ 0.05). Resultados y discusión: Los HMA mejoraron las características de la planta en comparación con el testigo y la fertilización. Rhizophagus intraradices causó los valores más altos de crecimiento en la parte aérea, colonización micorrízica y contenido de P, y el menor crecimiento en el sistema radical. Los aislamientos "Caracoles" y "Rosario Izapa" promovieron altura, biomasa de la raíz y contenido de P más altos que "Té limón" y "San Rafael". Conclusión: Los HMA permiten disminuir la fertilización química sin detrimento del crecimiento de L. leucocephala.

Studies on the influence of mycorrhiza on the growth and physiology of Vigna unguiculata and Abelmoschus esculentus

Diverse forms of microorganisms present in the soil and near the roots of plants, which play a vital role in numerous physiological processes, have attracted the attention of scientists. The dynamic microbial associations may be saprophytic, pathogenic, or symbiotic. The most widespread symbiosis of plants is the mycorrhizal association between root-inhabiting fungi and the feeder roots of plants. The present study was conducted to study the effects of arbuscular mycorrhizal fungi on mineral nutrition of Vigna unguiculata and Abelmoschus esculentus. The experiment comprised of uninoculated seedlings and seedlings inoculated with Glomus mosseae. The chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, protein, nitrate, nitrogen, and phosphorus content showed an increase in vesicular arbuscular mycorrhiza fungus-treated seedlings compared to non-mycorrhizal plants. The total soluble sugars and soluble starch content in leaves of all selected plant species in the present study showed a decrease in mycorrhizal seedlings compared to non-mycorrhizal seedlings.

Inoculation with Azospirillum brasilense enhances the quality of mesquite Prosopis juliflora seedlings

Forest Systems, 2012

Inoculation of mycorrhizal fungi and rhizobacteria in plants can improve their growth and physiological status, which could be particularly important for agricultural and forestry plants used for the revegetation of arid areas. Prosopis juliflora is a forest pioneer species that is drought resistant and has multiple uses (fodder, shade and shelter for livestock; timber and firewood, live fences and windbreaks in agroforestry systems). Azospirillum brasilense is a rhizobacterium that improves the growth of many agricultural crops. The hypothesis of this study was that P. juliflora seedlings produced in the nursery can respond positively to inoculation with A. brasilense CECT 590. Five months after inoculation, we examined the growth, water relations (osmotic potential at full turgor, osmotic potential at zero turgor, and the modulus of elasticity at full turgor), and concentration and content of macronutrients (N, P, K, Ca and Mg) in the seedlings. Subsequently, a trial was conducted to analyse root growth potential. A. brasilense CECT 590 inoculation caused an osmotic adjustment in P. juliflora seedlings but decreased the elasticity of the cell walls. Inoculation with A. brasilense CECT 590 significantly improved plant growth due in part to an increase of N concentration in the seedlings. A. brasilense CECT 590 inoculation also caused an increase in the root growth potential. The increased growth of P. juliflora seedlings inoculated with A. brasilense was probably caused by more than one mechanism. Inoculation with A. brasilense at the nursery may be a suitable technique for producing improved seedling material for restoration purposes.