Five Driving Forces of Multi-Access Edge Computing (original) (raw)
Related papers
Driving forces for Multi-Access Edge Computing (MEC) IoT integration in 5G
ICT Express
The emergence of Multi-Access Edge Computing (MEC) technology aims to extend cloud computing capabilities to the edge of the wireless access networks, i.e., closer to the end-users. Thus, MEC-enabled 5G wireless systems are envisaged to offer real-time, low-latency, and high-bandwidth access to the radio network resources. Thus, MEC allows network operators to open up their networks to a wide range of innovative services, thereby giving rise to a brand-new ecosystem and a value chain. Furthermore, MEC as an enabling technology will provide new insights into coherent integration of Internet of Things (IoT) in 5G wireless systems. In this context, this paper expounds the four key technologies, including Network Function Virtualization (NFV), Software Defined Networking (SDN), Network Slicing and Information Centric Networking (ICN), that will propel and intensify the integration of MEC IoT in 5G networks. Moreover, our goal is to provide the close alliance between MEC and these four driving technologies in the 5G IoT context and to identify the open challenges, future directions, and concrete integration paths. c
IEEE Access
Fifth-Generation (5G) mobile cellular networks provide a promising platform for new, innovative and diverse IoT applications, such as ultra-reliable and low latency communication, real-time and dynamic data processing, intensive computation, and massive device connectivity. End-to-End (E2E) network slicing candidates present a promising approach to resource allocation and distribution that permit operators to flexibly provide scalable virtualized and dedicated logical networks over common physical infrastructure. Though network slicing promises the provision of services on demand, many of its use cases, such as self-driving cars and Google's Stadia, would require the integration of a Multi-Access Edge Computing (MEC) platform in 5G networks. Edge Computing is envisioned as one of the key drivers for 5G and Sixth-Generation (6G) mobile cellular networks, but its role in network slicing remains to be fully explored. We investigate MEC and network slicing for the provision of 5G service focused use cases. Recently, changes to the cloud-native 5G core are a focus with MEC use cases providing network scalability, elasticity, flexibility, and automation. A cloud-native microservices architecture, along with its potential use cases for 5G network slicing, is envisioned. This paper also elaborates on the recent advances made in enabling E2E network slicing, its enabling technologies, solutions, and current standardization efforts. Finally, this paper identifies open research issues and challenges and provides possible solutions and recommendations. INDEX TERMS Network slicing, software defined networking, multi-access edge computing, cloud native, ultra-reliable, and low latency communication.
IJERT-Multi-Access EDGE Computing (MEC): A Mainstay of 5G
International Journal of Engineering Research and Technology (IJERT), 2019
https://www.ijert.org/multi-access-edge-computing-mec-a-mainstay-of-5g https://www.ijert.org/research/multi-access-edge-computing-mec-a-mainstay-of-5g-IJERTCONV7IS12012.pdf The proliferation of Internet of Things (IoT) and the success of rich cloud services have pushed the horizon of a new computing paradigm, edge computing, which calls for processing the data at the edge of the network. Edge computing has the potential to address the concerns of response time requirement, battery life constraint, bandwidth cost saving, as well as data safety and privacy. Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network. MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks. This paper introduces a survey on MEC and focuses on the fundamental key enabling technologies. This paper will review Multi-access edge computing in context to 5G. In addition, this paper analyzes the MEC reference architecture along with its pros and cons.
IEEE Access, 2018
Existing radio access networks (RANs) allow only for very limited sharing of the communication and computation resources among wireless operators and heterogeneous wireless technologies. We introduce the LayBack architecture to facilitate communication and computation resource sharing among different wireless operators and technologies. LayBack organizes the RAN communication and multi-access edge computing (MEC) resources into layers, including a devices layer, a radio node [enhanced Node B (eNB), Access Point (AP)] layer, and a gateway layer. LayBack positions the "coordination point" between the different operators and technologies just behind the gateways and thus consistently decouples the fronthaul from the backhaul. The coordination point is implemented through a software defined networking (SDN) switching layer that connects the gateways to the backhaul (core) network layer. A unifying SDN orchestrator implements an SDN based management framework that centrally manages the fronthaul and backhaul communication and computation resources and coordinates the cooperation between different wireless operators and technologies. We illustrate the capabilities of the introduced LayBack architecture and SDN based management framework through a case study on a novel fluid cloud RAN (CRAN) function split. The fluid CRAN function split partitions the RAN functions into function blocks that are flexibly assigned to MEC nodes, effectively implementing the RAN functions through network function virtualization (NFV). We find that for non-uniform call arrivals, the computation of the function blocks with resource sharing among operators increases a revenue rate measure by more than 25% compared to the conventional CRAN where each operator utilizes only its own resources.
IEEE Communications Surveys & Tutorials, 2017
Multi-access edge computing (MEC) is an emerging ecosystem, which aims at converging telecommunication and IT services, providing a cloud computing platform at the edge of the radio access network. MEC offers storage and computational resources at the edge, reducing latency for mobile end users and utilizing more efficiently the mobile backhaul and core networks. This paper introduces a survey on MEC and focuses on the fundamental key enabling technologies. It elaborates MEC orchestration considering both individual services and a network of MEC platforms supporting mobility, bringing light into the different orchestration deployment options. In addition, this paper analyzes the MEC reference architecture and main deployment scenarios, which offer multitenancy support for application developers, content providers, and third parties. Finally, this paper overviews the current standardization activities and elaborates further on open research challenges.
5G-ICN: Delivering ICN Services over 5G Using Network Slicing
IEEE Communications Magazine
The challenging requirements of 5G-from both the applications and the architecture perspectives-motivate the need to explore the feasibility of delivering services over new network architectures. As 5G proposes application-centric network slicing, which enables the use of new data planes realizable over a programmable compute, storage, and transport infrastructure, we consider Information-centric Networking (ICN) as a candidate network architecture to realize 5G objectives. This can co-exist with end-to-end IP services that are offered today. To this effect, we first propose a 5G-ICN architecture and compare its benefits (i.e., innovative services offered by leveraging ICN features) to current 3GPPbased mobile architectures. We then introduce a general application-driven framework that emphasizes on the flexibility afforded by Network Function Virtualization (NFV) and Software Defined Networking (SDN) over which 5G-ICN can be realized. We specifically focus on the issue of how mobility-as-a-service (MaaS) can be realized as a 5G-ICN slice, and give an in-depth overview on resource provisioning and inter-dependencies and-coordinations among functional 5G-ICN slices to meet the MaaS objectives.
Mobile Edge Computing with Network Resource Slicing for Internet-of-Things
— Network slicing is an end-to-end concept that encompasses network functions, radio accesses, and clouds for enabling customized information-centric Internet-of-Things (IoT) services. The key idea is to virtualize all the resources from radio accesses to IoT service layers, so that IoT service providers can automate resource provisioning and management for users. This paper introduces the recent standards effort on network slicing for IoT in various standards bodies such as 3GPP, NGMN, IETF, ETSI and oneM2M. In particular, standards activities on ETSI Multi-Access Edge Computing (MEC), NGMN and 3GPP Network Slicing and Virtualization, IETF slicing on transport networks and oneM2M IoT service layer resource slicing are introduced. Finally, this paper proposes a novel Edge Computing architecture customizing required network resources at the edge cloud, as close to users as possible, to minimize network signaling overhead in providing optimal IoT services.
Applied Sciences
Fifth-generation (5G) and beyond networks are envisioned to serve multiple emerging applications having diverse and strict quality of service (QoS) requirements. To meet ultra-reliable and low latency communication, real-time data processing and massive device connectivity demands of the new services, network slicing and edge computing, are envisioned as key enabling technologies. Network slicing will prioritize virtualized and dedicated logical networks over common physical infrastructure and encourage flexible and scalable networks. On the other hand, edge computing offers storage and computational resources at the edge of networks, hence providing real-time, high-bandwidth, low-latency access to radio network resources. As the integration of two technologies delivers network capabilities more efficiently and effectively, this paper provides a comprehensive study on edge-enabled network slicing frameworks and potential solutions with example use cases. In addition, this article fu...
Cellular network technologies have evolved to support the ever-increasing wireless data traffic, which results from the rapidly-evolving Internet and widely-adopted cloud applications over wireless networks. However, hardware-based designs, which rely on closed and inflexible architectures of current cellular systems, make a typical 10-year cycle for a new generation of wireless networks to be standardized and deployed. To overcome this limitation, the concept of software-defined networking (SDN) has been proposed to efficiently create centralized network abstraction with the provisioning of programmability over the entire network. Moreover, the complementary concept of network function virtualization (NFV) has been further proposed to effectively separate the abstraction of functionalities from the hardware by decoupling the data forwarding plane from the control plane. These two concepts provide cellular networks with the needed flexibility to evolve and adapt according to the ever-changing network context and introduce wireless software-defined networks (W-SDNs) for 5G cellular systems. Thus, there is an urgent need to study the fundamental architectural principles underlying a new generation of software-defined cellular network as well as the enabling technologies that supports and manages such emerging architecture. In this paper, first, the state-of-the-art W-SDNs solutions along with their associated NFV techniques are surveyed. Then, the key differences among these W-SDN solutions as well as their limitations are highlighted. To counter those limitations, SoftAir, a new SDN architecture for 5G cellular systems, is introduced. tural designs. Such inflexible hardware-based architectures typically lead to a 10-year cycle for a new generation of wireless networks to be standardized and deployed, impose significant challenges into adopting new wireless networking technologies to maximize the network capacity and coverage, and prevent the provision of truly-differentiated services able to adapt to increasingly growing, uneven, and highly variable traffic patterns. In particular, for 5G cellular system requirements, the ultra high capacity should have 1000-fold capacity/km 2 compared to LTE, the user-plane latency should be less than 1ms over the radio access network (RAN), and http://dx.
Leveraging SDN for The 5G Networks: Trends, Prospects and Challenges
Today 4G mobile systems are evolving to provide IP connectivity for diverse applications and services up to 1Gbps. They are designed to optimize the network performance, improve cost efficiency and facilitate the uptake of mass market IP-based services. Nevertheless, the growing demand and the diverse patterns of mobile traffic place an increasing strain on cellular networks. To cater to the large volumes of traffic delivered by the new services and applications, the future 5G network will provide the fundamental infrastructure for billions of new devices with less predictable traffic patterns will join the network. The 5G technology is presently in its early research stages, so researches are currently underway exploring different architectural paths to address their key drivers. SDN techniques have been seen as promising enablers for this vision of carrier networks, which will likely play a crucial role in the design of 5G wireless networks. A critical understanding of this emerging paradigm is necessary to address the multiple challenges of the future SDN-enabled 5G technology. To address this requirement, a survey the emerging trends and prospects, followed by in-depth discussion of major challenges in this area are discussed.