Culture Media Research Papers - Academia.edu (original) (raw)
Zinc oxide nanoparticles (nZnO) are one of the most highly produced nanomaterials and are used in numerous applications including cosmetics and sunscreens despite reports demonstrating their cytotoxicity. Dissolution is viewed as one of... more
Zinc oxide nanoparticles (nZnO) are one of the most highly produced nanomaterials and are used in numerous applications including cosmetics and sunscreens despite reports demonstrating their cytotoxicity. Dissolution is viewed as one of the main sources of nanoparticle (NP) toxicity, however dissolution studies can be time-intensive to perform and complicated by issues such as particle separation from solution. Our work attempts to overcome some of these challenges by utilizing new methods using UV/vis and fluorescence spectroscopy to quantitatively assess nZnO dissolution in various biologically relevant solutions. All biological buffers tested induce rapid dissolution of nZnO. These buffers, including HEPES, MOPS, and PIPES, are commonly used in cell culture media, cellular imaging solutions and to maintain physiological pH. Additional studies using X-ray diffraction, FT-IR, X-ray photoelectron spectroscopy, ICP-MS and TEM were performed to understand how the inclusion of these non-essential media components impacts the behavior of nZnO in RPMI media. From these assessments, we demonstrate that HEPES causes increased dissolution kinetics, boosts the conversion of nZnO into zinc phosphate/carbonate and, interestingly, alters the structural morphology of the complex precipitates formed with nZnO in cell culture conditions. Cell viability experiments demonstrated that the inclusion of these buffers significantly decreases the viability of Jurkat leukemic cells when challenged with nZnO. This work demonstrates that biologically relevant buffering systems dramatically impact the dynamics of nZnO including dissolution kinetics, morphology, complex precipitate formation, and toxicity profiles.
We studied a series of test conditions in a microtiter system to define the optimal method for determining the susceptibility of Cryptococcus neoformans to antifungal agents. Twenty-one isolates of C. neoformans were grown for 24 or 48 h... more
We studied a series of test conditions in a microtiter system to define the optimal method for determining the susceptibility of Cryptococcus neoformans to antifungal agents. Twenty-one isolates of C. neoformans were grown for 24 or 48 h in four chemically defined media: yeast nitrogen base (BYNB 7); RPMI 1640; synthetic amino acid medium--fungal (SAAMF), buffered at pH 7.0 to select the medium that best supported growth of this fastidious yeast; and yeast nitrogen base, pH 5.4 (YNB 5.4). Maximum growth of C. neoformans, at 35 degrees C, was obtained in YNB 5.4, with the next highest growth levels in BYNB 7, SAAMF, and RPMI. Growth at 24 h was uniformly poor in all media and lacked reproducibility. In contrast, incubation for 48 h gave adequate growth with low standard deviations, and 48 h was selected as the optimal incubation period for this study. Comparison of the relationship between growth kinetics and initial inoculum size for eight cryptococcal isolates showed that 10(4) cel...
Identification of Candida cultured from various clinical specimens to the species level is increasingly necessary for clinical laboratories. Although sn PCR identifies the species within hours but its cost-effectiveness is to be... more
Identification of Candida cultured from various clinical specimens to the species level is increasingly necessary for clinical laboratories. Although sn PCR identifies the species within hours but its cost-effectiveness is to be considered. So there is always a need for media which help in the isolation and identification at the species level. The study aimed to evaluate the performance of different chromogenic media and to compare the effectiveness of the traditional phenotypic methods vs. seminested polymerase chain reaction (sn PCR) for identification of Candida species. One hundred and twenty seven Candida strains isolated from various clinical specimens were identified by conventional methods, four different chromogenic media and sn PCR. HiCrome Candida Differential and CHROMagar Candida media showed comparably high sensitivities and specificities in the identification of C. albicans, C. tropicalis, C. glabrata and C. krusei. CHROMagar Candida had an extra advantage of identify...
The extracellular and intracellular metabolites formed upon exposure of activated sludge microorganisms to a sublethal concentration of N-ethylmaleimide were monitored by liquid chromatography with ion trap mass spectrometry. The... more
The extracellular and intracellular metabolites formed upon exposure of activated sludge microorganisms to a sublethal concentration of N-ethylmaleimide were monitored by liquid chromatography with ion trap mass spectrometry. The metabolite N-ethylsuccinimido-S-glutathione (m/z 433) was converted rapidly to N-(2-oxoethyl)-2,2-(propionylamino)propanamide (m/z 187) and N-ethylmaleamic acid (m/z 144).
Aims: Aspergillus carbonarius is an important ochratoxin A (OTA)-producing fungus which is responsible for toxin contamination of grapes and wine. The objectives of this study were to examine the partitioning of OTA in mycelium and... more
Aims: Aspergillus carbonarius is an important ochratoxin A (OTA)-producing fungus which is responsible for toxin contamination of grapes and wine. The objectives of this study were to examine the partitioning of OTA in mycelium and conidia of a range of A. carbonarius strains on artificial grape juice and defined media, to determine the excretion patterns of OTA from these spores, and the effect of organic acids used in wine production on OTA excretion from conidia. Methods and Results: The results showed that 60-70% of the OTA was accumulated in the conidia of a number of different isolates of A. carbonarius. Calculations showed that on different defined media, an amount of 0AE011-to 0AE1-pg OTA was present per conidium. The OTA in spores was found to be rapidly excreted into the medium during the initial few hours after conidial germination leading to an increase of OTA in must during maceration for wine production. The presence of tartaric acid inhibited OTA production, but malic acid enhanced this production during mycelial growth. These acids were also shown to affect the time course of germination and the rate of OTA excretion from conidia during germination. Conclusions: This study is the first to examine and show the partitioning of OTA into spores of strains of A. carbonarius and that rapid excretion of OTA from spores could be a reason for OTA accumulation in musts during wine production. Significance and Impact of the Study: Conidia of A. carbonarius could be a major source of OTA contamination of grapes used in wine production. This information could help in the development of effective prevention strategies to minimize wine contamination with this important mycotoxin.
The construction of expression vectors encoding either the human insulin A-or B-chains fused to a synthetic peptide and the temperature-induced expression of the recombinant genes in Escherichia coli are reported. Using this two-chain... more
The construction of expression vectors encoding either the human insulin A-or B-chains fused to a synthetic peptide and the temperature-induced expression of the recombinant genes in Escherichia coli are reported. Using this two-chain approach we also describe the separate isolation of the insulin A-and B-chains from inclusion bodies and their subsequent assembly into native human insulin. The production of the insulin fusion proteins were carried out in high-cell density fed-batch cultures using a synthetic medium with glucose as sole carbon and energy source. The expression of the recombinant genes by temperature-shift in high-cell density cultures of recombinant E. coli resulted in product yields of grams per litre of culture broth, e.g. 4.5 g of insulin B-chain fusion protein per litre of culture broth. This translates into an expression yield of about 800 mg of the insulin B-chain per litre of culture. Under similar cultivation conditions the expression yield of the insulin A-chain corresponds to approximately 600 mg per litre of culture. The metabolic burden imposed on the recombinant cells during temperature-induced production of insulin fusion proteins in high-cell density cultures is reflected in an increased respiratory activity and a reduction of the biomass yield coefficient with respect to glucose.
BackgroundThe environment preferred by Acanthamoeba trophozoites and the mechanism by which the amebae enters the cornea are not yet fully understood. A better understanding of the pathogenesis of this disease may help with prevention and... more
BackgroundThe environment preferred by Acanthamoeba trophozoites and the mechanism by which the amebae enters the cornea are not yet fully understood. A better understanding of the pathogenesis of this disease may help with prevention and treatment.
Studies of cyanobacterial nostocacean taxa are important to the global scientific community, mainly because a significant number of beneficial strains that belong to the order Nostocales fix atmospheric nitrogen, thus contributing to the... more
Studies of cyanobacterial nostocacean taxa are important to the global scientific community, mainly because a significant number of beneficial strains that belong to the order Nostocales fix atmospheric nitrogen, thus contributing to the fertility of agricultural soils worldwide, while others behave as nuisance microorganisms in aquatic ecosystems due to their involvement in toxic bloom events. However, in spite of their ecological importance and environmental concerns, their identification and taxonomy are still problematic and doubtful, often being based on current morphological and physiological studies, which generate confusing classification systems and usually vary under different conditions. Therefore, the present research aimed to investigate through a polyphasic approach differences in morphological, biochemical and genotypic features of three nostocacean cyanobacterial strains isolated from central-western Portuguese shallow freshwater bodies. Morphometric, genetic (16S rRNA, nifH and hetR fragments) and biochemical (fatty acid methyl ester; FAME profiles) data were used to characterize the strains. Morphological analysis and sequencing of 16S rRNA fragments showed that the strains belonged to Anabaena cylindrica (UTAD_A212), Aphanizomenon gracile (UADFA16) and Nostoc muscorum (UTAD_N213) species. These strains showed clear distinct morphological and genetic features, allowing easy allocation to their respective genera. The same happened by using partial sequences of hetR and nifH genes, in spite of the scarcity of deposited sequences. Biochemical characterization showed that the FAME profiles obtained were consistent with both morphological and molecular analyses. It was suggested that the ratio of monounsaturated to polyunsaturated FAMEs, together with the unsaturation index, could be used as genus-specific chemotaxonomic biomarkers.
The role of genes involved in sucrose catabolism was investigated with a view to designing effective prebiotic substrates to encourage the growth of Bifidobacterium in the gut. Two gene clusters coding for sucrose utilisation in... more
The role of genes involved in sucrose catabolism was investigated with a view to designing effective prebiotic substrates to encourage the growth of Bifidobacterium in the gut. Two gene clusters coding for sucrose utilisation in Bifidobacterium longum NCC2705 were identified in the published genome. The genes encoding putative sucrose degrading enzymes, namely, the scrP (sucrose phosphorylase) and the cscA (β-fructofuranosidase), were cloned from B. longum NCIMB 702259 T and expressed in Escherichia coli DH5α. Both complemented the sucrase negative phenotype of untransformed cells and showed specific sucrase activity. Transcriptional analysis of the expression of the genes in B. longum grown in the presence of various carbohydrate substrates showed induction of scrP gene expression in the presence of sucrose and raffinose, but not in the presence of glucose. The cscA gene showed no increased transcription in B. longum grown in the presence of any of the carbohydrates tested. Phylogenetic analysis indicates that the B. longum CscA protein belongs to a distinct phylogenetic cluster of intracellular fructosidases, which specifically cleave the shorter fructose oligosaccharides.
Cellulose nanofibers with a size range of 5–100 nm have the potential to be a low cost renewable material that has application in a range of products. However, current chemical methods to produce crystalline nanofibers suffer from low... more
Cellulose nanofibers with a size range of 5–100 nm have the potential to be a low cost renewable material that has application in a range of products. However, current chemical methods to produce crystalline nanofibers suffer from low yields and high chemical costs, while mechanical methods require high energy costs. Methods to lower the energy costs of the mechanical methods have not been well documented in the literature. A bleached softwood kraft pulp was processed using a mechanical dispersion mill and a homogenizer to produce cellulose nanofibers. Two different commercial enzymes were used to pretreat the wood fibers before the mechanical treatments. The resulting nanofibers were characterized by light microscopy, atomic force microscopy, and inverse gas chromatography. Results indicate that the dispersion mill does not affect the overall pulp fiber fibrillation, but does help prepare the sample for the homogenizer. Most fibrillation occurs after three passes through the homogenizer. The enzyme pretreatment has little effect on the size of the fibers, but does allow for higher solids to pass through the homogenizer without clogging. The dispersion component of surface energy of the resulting nanofibrils is impacted by the type of enzyme used. The measurement of acid–base properties proved to be challenging using current IGC experimental protocols.
Phenyllactic acid (PLA) has recently been found in cultures of Lactobacillus plantarum that show antifungal activity in sourdough breads. The fungicidal activity of PLA and growth inhibition by PLA were evaluated by using a microdilution... more
Phenyllactic acid (PLA) has recently been found in cultures of Lactobacillus plantarum that show antifungal activity in sourdough breads. The fungicidal activity of PLA and growth inhibition by PLA were evaluated by using a microdilution test and 23 fungal strains belonging to 14 species of Aspergillus, Penicillium, and Fusarium that were isolated from bakery products, flours, or cereals. Less than 7.5 mg of PLA ml ؊1 was required to obtain 90% growth inhibition for all strains, while fungicidal activity against 19 strains was shown by PLA at levels of <10 mg ml ؊1 . Levels of growth inhibition of 50 to 92.4% were observed for all fungal strains after incubation for 3 days in the presence of 7.5 mg of PLA ml ؊1 in buffered medium at pH 4, which is a condition more similar to those in real food systems. Under these experimental conditions PLA caused an unpredictable delaying effect that was more than 2 days long for 12 strains, including some mycotoxigenic strains of Penicillium verrucosum and Penicillium citrinum and a strain of Penicillium roqueforti (the most widespread contaminant of bakery products); a growth delay of about 2 days was observed for seven other strains. The effect of pH on the inhibitory activity of PLA and the combined effects of the major organic acids produced by lactic acid bacteria isolated from sourdough bread (PLA, lactic acid, and acetic acid) were also investigated. The ability of PLA to act as a fungicide and delay the growth of a variety of fungal contaminants provides new perspectives for possibly using this natural antimicrobial compound to control fungal contaminants and extend the shelf lives of foods and/or feedstuffs.
We evaluated the potential of chitosan both to stimulate plant development and to induce protection from Botrytis cinerea in Vitis vinifera L. plantlets. The presence of 1.75% (v/v) chitogel in the culture medium was the optimal... more
We evaluated the potential of chitosan both to stimulate plant development and to induce protection from Botrytis cinerea in Vitis vinifera L. plantlets. The presence of 1.75% (v/v) chitogel in the culture medium was the optimal concentration for in vitro grapevine plantlet growth, as determined by measurements on enhancement of root and shoot biomass. Photosynthesis and related parameters were also stimulated in chitogel-treated plantlets. Chitogel reduced the development of Botrytis cinerea and induced cytological alterations to the pathogen. When challenged with the fungus, a significant decrease in disease incidence was observed in plants growing on medium supplemented with chitogel. Furthermore, exogenous foliar applications of chitogel to plantlets growing on chitogel-free medium sensitized them so as to be protected against Botrytis cinerea attack. Our results indicate that chitogel can be used in the vineyard as a means to attain protection against Botrytis cinerea and that its application may counteract the wide use of chemical pesticides.
We compared PCR to conventional culture for the detection of vancomycin-resistant enterococci (VRE) in 30,835 rectal samples over a 3-year period. The positive and negative predictive values of vanB PCR were 1.42% and 99.9%, respectively.... more
We compared PCR to conventional culture for the detection of vancomycin-resistant enterococci (VRE) in 30,835 rectal samples over a 3-year period. The positive and negative predictive values of vanB PCR were 1.42% and 99.9%, respectively. A positive vanB result by PCR is poorly predictive and necessitates culture for differentiation of VRE-positive and -negative individuals.
We have previously reported the identification of a small, basic and cysteine-rich antifungal peptide (AcAFP) secreted by Aspergillus clavatus and shown its ability to prevent growth of various human-and plant-pathogenic filamentous... more
We have previously reported the identification of a small, basic and cysteine-rich antifungal peptide (AcAFP) secreted by Aspergillus clavatus and shown its ability to prevent growth of various human-and plant-pathogenic filamentous fungi. In this study, we sought to determine the physiological/microbiological requirements to enhance the AcAFP production and the conditions influencing its stability. The maximum of AcAFP production was obtained when A. clavatus was grown on 2% glycerol as sole carbon source and 100 mM NaCl. The AcAFP expression was shown to be influenced by pH, being suppressed under acidic (pH 5) and strongly induced under alkaline conditions. The activity of the purified AcAFP was not affected by temperature; it loosed approximately 20% of its activity after 3 h at 100°C and was efficient through a large pH range (pH 5-12) with an optimum at pH 8. AcAFP activity decreased at high ionic strength and in the presence of 10 mM of divalent cations (Mn 2+ , Fe 2+ and Ca 2+ ).
Obtaining karyotypes from human spermatozoa after microinjection into Syrian golden hamster oocytes is difficult and the hitherto reported results are unsatisfactory. This may be related to the injection and culture technique or to the... more
Obtaining karyotypes from human spermatozoa after microinjection into Syrian golden hamster oocytes is difficult and the hitherto reported results are unsatisfactory. This may be related to the injection and culture technique or to the high susceptibility of the hamster oocytes to undergo parthenogenetic activation or both. Therefore, we investigated the hamster oocyte-human sperm microinjection model using the following two approaches: (i) application of contemporary techniques for injection (touching the sperm tail) and culture (hamster embryo culture medium, HECM-3, 10% CO 2 ) and (ii) omission of Ca 2⍣ from the injection medium. Thus, in the first series of experiments, 252 hamster oocytes were injected with human spermatozoa. Among the 219 (87%) oocytes that survived the injection procedure, the mean percentages of male pronucleus formation [two pronuclei (2PN), two polar bodies (PB)], mitotic metaphase entry and sperm chromosome spreads were 41.4, 27.8 and 18.2% respectively. Analysis of the oocytes which failed to develop the male pronucleus following injection revealed that most of them had developed only the hamster female PN while the sperm nuclei were either intact or swollen (partially decondensed), indicating that failure of oocyte activation was not the likely reason for the failure of male PN formation in these oocytes. In the next series of experiments, sibling oocytes were alternately injected with spermatozoa suspended either in the regular (1.9 mM Ca 2⍣ ) or Ca 2⍣ -free injection medium (experiment set 2, n ⍧ 278). A significant improvement was noted in the mean percentages of oocytes with 2PN, 2PB, metaphase entry and sperm chromosome spreads in the Ca 2⍣ -free group versus the regular group (2PN, 2PB: 51 versus 36.6%, metaphase entry: 36.3 versus 26.9% and sperm chromosome spreads: 28 versus 20.4%; all P < 0.04). Thus, parthenogenetic activation appears to be one of the contributing factors for the failure of male PN formation after heterospecific hamster ICSI. From these experiments it can be concluded that application of the advanced injection and culture techniques and omission of Ca 2⍣ from the injection medium are promising for the routine application of the hamster oocyte microinjection for karyotyping of human spermatozoa with poor fertilizing capacity.
When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss... more
When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions.
There is a lack of data regarding potential exposure of gametes to bisphenol A during IVF. Detectable concentrations of bisphenol A were not found in commonly used IVF plastic culture dishes, suction tubing or growth media under... more
There is a lack of data regarding potential exposure of gametes to bisphenol A during IVF. Detectable concentrations of bisphenol A were not found in commonly used IVF plastic culture dishes, suction tubing or growth media under normal-use conditions. RBMOnline Reproductive BioMedicine Online (2012) 25, 608-611 w w w . s c i e n c e d i r e c t . c o m w w w . r b m o n l i n e . c o m
Mercury rich geothermal springs are likely environments where mercury resistance is critical to microbial life and where microbe-mercury interactions may have evolved. Eleven facultative thermophilic and chemolithoautotrophic, thiosulfate... more
Mercury rich geothermal springs are likely environments where mercury resistance is critical to microbial life and where microbe-mercury interactions may have evolved. Eleven facultative thermophilic and chemolithoautotrophic, thiosulfate oxidizing bacteria were isolated from thiosulfate enrichments of biofilms from mercury rich hot sulfidic springs in Mount Amiata, Italy. Some strains were highly resistant to mercury (‡200 lM HgCl 2) regardless of its presence or absence during primary enrichments, and three reduced ionic mercury to its elemental form. The gene encoding for the mercuric reductase enzyme (MerA), was amplified by PCR from seven strains. However, one highly resistant strain did not reduce mercury nor carried merA, suggesting an alternative resistance mechanism. All strains were members of the order Bacillales and were most closely related to previously described thermophiles belonging to the Firmicutes. Phylogenetic analyses clustered the MerA of the isolates in two supported novel nodes within the Firmicutes lineage and a comparison with the 16S rRNA gene tree suggested at least one case of horizontal gene transfer. Overall, the results show that the thermophilic thiosulfate oxidizing isolates were adapted to life in presence of mercury mostly, but not exclusively, by possessing MerA. These findings suggest that reduction of mercury by chemolithotrophic thermophilic bacteria may mobilize mercury from sulfur and iron deposits in geothermal environments.
A protocol for in vitro mass multiplication of plants through seedling (shoot) cultures was established for Ophiorrhiza mungo. Maximum number of adventitious shoots per shoot culture (10.4 +/- 1.72) was initiated on MS solid medium... more
A protocol for in vitro mass multiplication of plants through seedling (shoot) cultures was established for Ophiorrhiza mungo. Maximum number of adventitious shoots per shoot culture (10.4 +/- 1.72) was initiated on MS solid medium supplemented with BAP (2.22 microM) after 3 weeks. Shoots were further multiplied (12.8 +/- 2.8) through subculture of intact shoots and reculture of nodal segments of aseptic shoots (6.5 +/- 0.94) in MS solid medium containing BAP (0.89 microM). Shoot elongation (1.27 +/- 0.12 cm) was achieved in the medium containing GA3 (1.44 microM) in two weeks. Rooting was favoured in basal agar medium supplemented with IBA (12.3 microM) plus NAA (1.07 microM). The plants were successfully established (100%) in the pots containing sand and top soil (1:1) mixture in a period of two weeks.
118 strains of heterotrophic microorganisms were isolated from goat cheese produced domestically in the IV Region of Northern Chile (Serene, Ovalle, and Illapel) and sold in supermarkets in Valparaíso, Chile. The results of 89 phenotypic... more
118 strains of heterotrophic microorganisms were isolated from goat cheese produced domestically in the IV Region of Northern Chile (Serene, Ovalle, and Illapel) and sold in supermarkets in Valparaíso, Chile. The results of 89 phenotypic tests were numerically analyzed against 17 reference strains, using the simple matching coefficient (S SM). Thirteen phena were found at a 78% similarity level. Five of them (A, B, C, D, and E) were assigned to the family Enterobacteriaceae, phenon F was identified as belonging to the genus Aeromonas and strains of phenon G were assigned to the genus Acinetobacter. The other phena were identified as being members of the genera Bacillus (H, I, and J), Staphylococcus (K), Enterococcus (L), and Micrococcus (M). Approximately 19% of the isolates were Escherichia coli and 27%, Staphylococcus aureus.
S ince the beginning of their lives, all living organisms are exposed to the influence of geomagnetic fields. Objectives: With respect to the positive effects that magnetic fields have on human tissues, especially the bactericidal effect,... more
S ince the beginning of their lives, all living organisms are exposed to the influence of geomagnetic fields. Objectives: With respect to the positive effects that magnetic fields have on human tissues, especially the bactericidal effect, this investigation aimed to assess their influence on the reduction of oral microorganisms. Material and Methods: In order to obtain adequate specimens of dental plaque deposit, microbes such as Streptococcus parasanguinis, Staphylococcus epidermidis, Rhodococcus equi and Candida albicans were isolated from the human mouth. To establish the intensity of microbial growth on the basis of the modified optical density (OD) of agar turbidimetry assay, microbial count and spectrophotometry were applied. The study was carried out with two microbial concentrations (1 and 10 CFU/ml) after periods of incubation of 24 and 48 h and using micromagnets. Results: A positive effect of the magnetic field, resulting in the reduction of dental plaque microbes in vitro, was found. In the first 24 hours of exposure to the magnetic field, the number of all isolated microbes was significantly reduced. The most potent influence of magnets and the most intensified reduction after 24 hours were evident in Candida albicans colonies. The decrease in the influence of magnets on microbes in vitro was also detected. Conclusions: Magnets reduce the number of microbes and might be recommended as a supplement in therapy for reduced periodontal tissues. This is important because periodontal tissues that are in good conditions provide prolonged support to the oral tissues under partial and supradental denture.
Porcine intestinal spirochaetes are fastidious anaerobic organisms and, as a consequence, it has been necessary to develop various protocols to enhance their isolation from or detection in faeces. Immunomagnetic separation (IMS) is a... more
Porcine intestinal spirochaetes are fastidious anaerobic organisms and, as a consequence, it has been necessary to develop various protocols to enhance their isolation from or detection in faeces. Immunomagnetic separation (IMS) is a method developed recently to improve ...
Protozoan parasites of genus Leishmania cause a number of important human diseases including cutaneous, mucocutaneous and visceral leishmaniasis. During their digenetic life cycle, these parasites alternate between an extracellular... more
Protozoan parasites of genus Leishmania cause a number of important human diseases including cutaneous, mucocutaneous and visceral leishmaniasis. During their digenetic life cycle, these parasites alternate between an extracellular promastigote stage and an intracellular amastigote stage that reside within the phagolysosome compartment of macrophages in mammalian hosts (Descoteaux and Turco, 2002; Handman and Bullen, 2002). One of the key determinants of parasite infectivity and survival in these environments is the glycoconjugate lipophosphoglycan (LPG). LPG from all Leishmania species has same structure and composed of a repeating phosphorylated disaccharide unit attached via a phosphosaccharide core to the phosphatidylinositol, 1-O-alkyl-2-lysophosphatidylinositol (McConville et al., 1992; Turco and Descoteaux, 1992). New strategies for control of leishmaniasis are needed since chemotherapy such as antimonial drugs is prolonged, expensive, associated with side effects and relapses. Vector control has limitations and a vaccine which may be the best approach is not available. LPG has several functions and has been implicated in binding of parasites to epithelial cells of the sandfly
Hypersensitive response and pathogenicity (hrp) genes control the ability of major groups of plant pathogenic bacteria to elicit the hypersensitive response (HR) in resistant plants and to cause disease in susceptible plants. A number of... more
Hypersensitive response and pathogenicity (hrp) genes control the ability of major groups of plant pathogenic bacteria to elicit the hypersensitive response (HR) in resistant plants and to cause disease in susceptible plants. A number of Hrp proteins share significant similarities with components of the type III secretion apparatus and f lagellar assembly apparatus in animal pathogenic bacteria. Here we report that Pseudomonas syringae pv. tomato strain DC3000 (race 0) produces a filamentous surface appendage (Hrp pilus) of 6-8 nm in diameter in a solid minimal medium that induces hrp genes. Formation of the Hrp pilus is dependent on at least two hrp genes, hrpS and hrpH (recently renamed hrcC), which are involved in gene regulation and protein secretion, respectively. Our finding of the Hrp pilus, together with recent reports of Salmonella typhimurium surface appendages that are involved in bacterial invasion into the animal cell and of the Agrobacterium tumefaciens virB-dependent pilus that is involved in the transfer of T-DNA into plant cells, suggests that surface appendage formation is a common feature of animal and plant pathogenic bacteria in the infection of eukaryotic cells. Furthermore, we have identified HrpA as a major structural protein of the Hrp pilus. Finally, we show that a nonpolar hrpA mutant of P. syringae pv. tomato DC3000 is unable to form the Hrp pilus or to cause either an HR or disease in plants. The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked ''advertisement'' in accordance with 18 U.S.C. §1734 solely to indicate this fact.
The present study was designed to examine the influence of oocyte quality, culture media and gonadotropins on cleavage rate and development of in vitro fertilized buffalo embryos. Three experiments were conducted. In experiment 1, oocytes... more
The present study was designed to examine the influence of oocyte quality, culture media and gonadotropins on cleavage rate and development of in vitro fertilized buffalo embryos. Three experiments were conducted. In experiment 1, oocytes were classified by number of cumulus cell layers and morphology of the ooplasm as good, fair or poor. Oocytes were cultured for IVM, IVF and IVC in CR1aa medium. In experiment 2, good quality oocytes were cultured for maturation in: (1) CR1aa; (2) CR2aa; (3) TCM-199; (4) MEM or (5) RPMI-1640, and then fertilized using frozen thawed buffalo spermatozoa in CR1aa. The oocytes were cultured in the same medium used for maturation after fertilization. In experiment 3, oocytes were classified into three groups: group (1) was without gonadotropin and serve as a control; group (2) in which IVM medium was supplemented with 10 g/ml FSH and group (3) in which IVM medium was supplemented with 10 IU ml −1 eCG.
The antiviral effect against hepatitis B virus (HBV) of artemisinin, its derivative artesunate and other compounds highly purified from traditional Chinese medicine remedies, were investigated. HBV production by permanently transfected... more
The antiviral effect against hepatitis B virus (HBV) of artemisinin, its derivative artesunate and other compounds highly purified from traditional Chinese medicine remedies, were investigated. HBV production by permanently transfected HepG2 2.2.15 cells was determined by measuring the release of surface protein (HBsAg) and HBV-DNA after drug exposure (0.01-100 M) for 21 days. The forms of HBV-DNA released were investigated by Southern-blotting. Neutral Red retention test was used to evaluate drug-induced toxicity on host cells. The compounds were classified according to their potential interest as follows: (i) none: they had no effect on viral production (daidzein, daidzin, isonardosinon, nardofuran, nardosinon, tetrahydronardosinon and quercetin); (ii) low: they were able to markedly reduce viral production, but also induced toxicity on host cells (berberine and tannic acid) or they had no toxic effect on host cells but only had a moderate ability to reduce viral production (curcumin, baicalein, baicalin, bufalin, diallyl disulphide, glycyrrhizic acid and puerarin); (iii) high: they induced strong inhibition of viral production at concentrations at which host cell viability was not affected (artemisinin and artesunate). Moreover, artesunate in conjunction with lamivudine had synergic anti-HBV effects, which warrants further evaluation of artemisinin/artesunate as antiviral agents against HBV infection.
We have developed a novel three-dimensional (3D) cellular microarray platform to enable the rapid and efficient tracking of stem cell fate and quantification of specific stem cell markers. This platform consists of a miniaturized 3D cell... more
We have developed a novel three-dimensional (3D) cellular microarray platform to enable the rapid and efficient tracking of stem cell fate and quantification of specific stem cell markers. This platform consists of a miniaturized 3D cell culture array on a functionalized glass slide for spatially addressable high-throughput screening. A microarray spotter was used to deposit cells onto a modified glass surface to yield an array consisting of cells encapsulated in alginate gel spots with volumes as low as 60 nL. A method based on an immunofluorescence technique scaled down to function on a cellular microarray was also used to quantify specific cell marker protein levels in situ. Our results revealed that this platform is suitable for studying the expansion of mouse embryonic stem (ES) cells as they retain their pluripotent and undifferentiated state. We also examined neural commitment of mouse ES cells on the microarray and observed the generation of neuroectodermal precursor cells characterized by expression of the neural marker Sox-1, whose levels were also measured in situ using a GFP reporter system. In addition, the high-throughput capacity of the platform was tested using a dual-slide system that allowed rapid screening of the effects of tretinoin and fibroblast growth factor-4 (FGF-4) on the pluripotency of mouse ES cells. This high-throughput platform is a powerful new tool for investigating cellular mechanisms involved in stem cell expansion and differentiation and provides the basis for rapid identification of signals and conditions that can be used to direct cellular responses. Biotechnol. Bioeng. 2010; 106: 106–118. © 2010 Wiley Periodicals, Inc.
Cheese whey (CW) is the major subproduct from cheese manufacturing and it is considered as a waste pollutant since its high content of lactose. In this work a fermentation process for the production of penicillin acylase (PA) by a... more
Cheese whey (CW) is the major subproduct from cheese manufacturing and it is considered as a waste pollutant since its high content of lactose. In this work a fermentation process for the production of penicillin acylase (PA) by a recombinant Escherichia coli and using CW as unique carbon source and inducer was developed. A design factorial 3 2 was used to evaluate the influence of independent variables (dissolved oxygen and CW concentration) on the ability of E. coli W3110/pPA102 to produce PA. Maximum specific PA activity of 781 U g À1 was attained at 5 g L À1 of CW and 3% dissolved oxygen. The results showed that CW can be used successfully as unique carbon source and inducer for the production of recombinant proteins using constructions driven by the lac promoter and this way reducing the discharges of that pollutant to the environment. # .mx (A. De León-Rodríguez).
Application of a dipstick assay for the detection of Salmonella typhi-specific IgM antibodies on samples collected from S. typhi or S. paratyphi culture-positive patients at the day of admission to the hospital revealed the presence of... more
Application of a dipstick assay for the detection of Salmonella typhi-specific IgM antibodies on samples collected from S. typhi or S. paratyphi culture-positive patients at the day of admission to the hospital revealed the presence of specific IgM antibodies in 43.5%, 92.9%, and 100% for samples collected 4-6 days, 6-9 days, and > 9 days after the onset of fever,
Tuberculosis continues to be a major global health problem. Lack of accurate, rapid and costeffective diagnostic tests poses a huge obstacle to global TB control. While several new diagnostic tools are being developed and evaluated for... more
Tuberculosis continues to be a major global health problem. Lack of accurate, rapid and costeffective diagnostic tests poses a huge obstacle to global TB control. While several new diagnostic tools are being developed and evaluated for TB, it is important that new tools are introduced for widespread use only after careful validation of accuracy, impact as well as costeffectiveness in real-world settings. While there are large numbers of studies on the accuracy of TB diagnostic tests, there are few studies that are focused on cost and cost-effectiveness. There are currently no widely accepted standards on how to evaluate costs of a TB test. In this review, we describe the basic approach for computing the costs of TB diagnostic tests, and provide templates for various data elements and parameters that go into the costing ana lysis. We hope this will pave the way for a standardized methodology for costing of TB diagnostic tests. Such a tool would enable improved and more generalizable costing analyses that can provide a strong foundation for more sophisticated economic analyses that evaluate the full economic and epidemiological impact resulting from the implementation and routine use of performance-verified new and innovative diagnostic tools. This, in turn, will facilitate evidence-based adoption and use of new diagnostics, especially in resource-limited settings.
The lack of cultured microorganisms represents a bottleneck for advancement in microbiology. The development of novel culturing techniques is, therefore, a crucial step in our understanding of microbial diversity in general, and the role... more
The lack of cultured microorganisms represents a bottleneck for advancement in microbiology. The development of novel culturing techniques is, therefore, a crucial step in our understanding of microbial diversity in general, and the role of such diversity in the environment, in particular. This study presents an innovative method for cultivating microorganisms by encapsulating them within agar spheres, which are then encased in a polysulfonic polymeric membrane and incubated in a simulated or natural environment. This method stimulates growth of the entrapped microorganisms by allowing them access to essential nutrients and cues from the environment. It allows for the discovery of microorganisms from dilutions that are 10-100-fold greater than possible with conventional plating techniques. Analysis of microorganisms grown in such spheres incubated in and on a number of different substrates yielded numerous novel ribotypes. For example, spheres incubated on the mucus surface of a Fungiid coral yielded numerous ribotypes, with only 50% sharing similarity (85-96%) to previously identified microorganisms. This suggests that many of the species represent novel ribotypes. Hence, the technique reported here advances our ability to retrieve and successfully culture microorganisms and provides an innovative tool to access unknown microbial diversity.
The vertebrate inner ear has been extensively studied as a model system of morphogenesis and differentiation. The interactions between epithelium and surrounding mesenchyme have not previously been studied directly, because an appropriate... more
The vertebrate inner ear has been extensively studied as a model system of morphogenesis and differentiation. The interactions between epithelium and surrounding mesenchyme have not previously been studied directly, because an appropriate experimental system had not been established. Here we describe a mesenchyme-free culture system of E11.5 mouse otic vesicle which retains the ability for (1) formation of the cochlear loop, (2) emigration of ganglion cells from the epithelium and (3) invagination of semicircular canal epithelium. E10.5 otic vesicle was maintained using the same method, but morphogenesis was less successful. Culture of the E11.5 cochlear region alone resulted in regeneration of a structure with semicircular canal character from the cut end, indicating that region-specific cell fate within the otic vesicle is not irreversibly determined at this stage. Co-culturing otic vesicle with cochleovestibular ganglion (CVG) resulted in enhanced looping or ectopic diverticulum formation of the cochlear region, suggesting that the CVG provides a morphogenetic signal for cochlear looping. Cochlear looping was specifically blocked by inhibiting actin polymerization by cytochalasin D, while morphogenesis of the semicircular canal region remained intact. Hyaluronidase treatment inhibited semicircular canal morphogenesis, resulting in a cystic form of the otic vesicle. These data validate this culture system as a tool for elucidating the mechanism of morphogenesis of the otic vesicle.
Fungi dissolve soil minerals by acidifying their microenvironments, exuding chelating molecules, and by mechanical disruption of the crystal lattice. Dissolution may occur at two scales: microscale (surface of contact between fungus and... more
Fungi dissolve soil minerals by acidifying their microenvironments, exuding chelating molecules, and by mechanical disruption of the crystal lattice. Dissolution may occur at two scales: microscale (surface of contact between fungus and mineral) and medium scale (affecting entire mineral grains). Mineral weathering by fungi and other microorganisms is being intensely investigated as thought to be a significant global contribution to weathering, perhaps also modifying weathering products, especially clay minerals. Here we report fungal dissolution of phlogopite (Mg-Fe-rich mica) in experiments with three fungal strains (Alternaria tenuissima, Cladosporium cladosporioides and Stilbella sp.) grown on solid medium for 30 days at 21 °C and 96-100% relative humidity. The focus was to investigate the chemical changes induced by the fungi on phlogopite, translocation of micronutrients to the mycelium and the possible differences between the three species. The study used variablepressure SEM-EDS equipped with both secondary electrons with charge contrast imaging and backscattered electrons. Statistical analysis of the results (principal component and discriminant analysis) discriminated between the weathering activities of the three fungal species, which increased from Stilbella to C. cladosporioides to A. tenuissima, in agreement with the respective decreasing pH values measured in the media (6.4, 5.8, 5.2 ± 0.03). Phlogopite weathering features were irregular and variable (contrast change, troughs, lateral dissolution, flake thinning, breakdown), apparently not caused by direct contact with fungal hyphae. EDS values indicated several weathering stages and two or more dissolution mechanisms, one of them suggesting cation rearrangement in the mica towards decreasing octahedral and interlayer cation contents that produced Al-rich smectite. Intimate fungusmineral interaction was observed as hyphal attachment to phlogopite surfaces, penetration between sheets at the edges (where phlogopite structure is more labile) and changes in the 3 contrast of the mica surface around attached hyphae. The lack of observable dissolution traces from such contact interaction is interpreted as the result of effacing by the more intense acid leaching operating at larger scale.
A collaborative study on total aerobic bacterial count was conducted to validate the Hygicult ® TPC dipslide against contact plates and swabbing, using stainless-steel surfaces artificially contaminated with different microbes at various... more
A collaborative study on total aerobic bacterial count was conducted to validate the Hygicult ® TPC dipslide against contact plates and swabbing, using stainless-steel surfaces artificially contaminated with different microbes at various levels. Twelve laboratories took part in the validation procedure. The total number of collaborative samples was 108. The microbial level in each sample was assessed in triplicate using the 3 above-mentioned methods under 3 different incubation conditions (at 25 ± 1°C for 48 and 72 h and at 30 ± 1°C for 48 h). Surface sampling methods detached 25-30% at the lowest (theoretical yield, 1.4 cfu/cm²), 18-20% at the middle (theoretical yield, 10.7 cfu/cm²), and 16-21% at the highest (theoretical yield, 43.6 cfu/cm²) levels of microbes from the test surfaces. The percentage of acceptable results after removing outliers was 89%. Repeatability standard deviations ranged from 27.2 to 74.6% and reproducibility standard deviations ranged from 42.1 to 97.5%. There were no significant differences between results obtained at different incubation temperatures (25 and 30°C) or incubation times (48 and 72 h) for all 3 methods. The Hygicult TPC dipslide, contact plate, and swabbing methods gave similar results at all 3 microbial levels tested: 0.35-0.43 cfu/cm² at the lowest level, 1.9-2.2 cfu/cm² at the middle level, and 7.1-9.1 cfu/cm² at the highest level. M icrobiological hygiene in food production and processing aims to protect the consumer from pathogenic agents and assure food quality (1-3). Tech
The production and characterization of an active recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21(DE3) has been previously reported. In this study, the effect of the signal peptide (SP), inducer... more
The production and characterization of an active recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21(DE3) has been previously reported. In this study, the effect of the signal peptide (SP), inducer concentration, process scale, and operational mode (batch and semi-continuous) on GALNS production were evaluated. When native SP was presented, higher enzyme activity levels were observed in both soluble and inclusion bodies fractions, and its removal had a significant impact on enzyme activation. At shake scale, the optimal IPTG concentrations were 0.5 and 1.5 mM for the strains with and without SP, respectively, whereas at bench scale, the highest enzyme activities were observed with 1.5 mM IPTG for both strains. Noteworthy, enzyme activity in the culture media was only detected when SP was presented and the culture was carried out under semi-continuous mode. We showed for the first time that the mechanism that in prokaryotes recognizes the SP to mediate sulfatase activation can also recognize a eukaryotic SP, favoring the activation of the enzyme, and could also favor the secretion of the recombinant protein. These results offer significant information for scaling-up the production of human sulfatases in E. coli.
The aim of this study was to evaluate the effect of progesterone supplementation and stage of oestrous cycle on in vitro maturation (IVM) of canine oocytes. Oocytes were cultured in medium supplemented with 0, 2000, 4000 or 8000 ng... more
The aim of this study was to evaluate the effect of progesterone supplementation and stage of oestrous cycle on in vitro maturation (IVM) of canine oocytes. Oocytes were cultured in medium supplemented with 0, 2000, 4000 or 8000 ng progesterone ml(-1) (Expt 1; n=274 oocytes) or 0, 20, 200 or 2000 ng progesterone ml(-1) (Expt 2; n=789 oocytes). In Expt 3, oocytes (n=1202) were cultured in a bi-phasic system of meiotic arrest followed by IVM, both in the presence of 0, 20, 200 or 2000 ng progesterone ml(-1). Rates of meiotic resumption for Expt 1 ranged from 40.0% to 58.5%; there were no significant differences among groups. In Expt 2, rate of meiotic resumption was significantly lower in the 2000 ng progesterone ml(-1) treatment (35.5%) compared with the 200 ng progesterone ml(-1) treatment (54.0%; P<0.05). There were no significant differences in rates of maturation to metaphase II among treatments in Expt 1 (1.8-8.6%) or Expt 2 (8.4-14.7%); however, oocytes collected from ovarie...
- by Duane Kraemer
- •
- Physiology, Reproduction, Oogenesis, Dogs
Staphylococcus epidermidis, a Gram-positive, coagulase-negative bacterium is a predominant inhabitant of human skin and mucous membranes. Recently, however, it has become one of the most important agents of hospital-acquired bacteriemia,... more
Staphylococcus epidermidis, a Gram-positive, coagulase-negative bacterium is a predominant inhabitant of human skin and mucous membranes. Recently, however, it has become one of the most important agents of hospital-acquired bacteriemia, as it has been found to be responsible for surgical wound infections developed in individuals with indwelling catheters or prosthetic devices, as well as in immunosupressed or neutropenic patients. Despite their medical significance, little is known about proteolytic enzymes of S. epidermidis and their possible contribution to the bacterium's pathogenicity; however, it is likely that they function as virulence factors in a manner similar to that proposed for the proteases of Staphylococcus aureus. Here we describe the purification of a cell wall-associated cysteine protease from S. epidermidis, its biochemical properties and specificity. A homology search using N-terminal sequence data revealed similarity to staphopain A (ScpA) and staphopain B (SspB), cysteine proteases from S. aureus. Moreover, the gene encoding S. epidermidis cysteine protease (Ecp) and a downstream gene coding for a putative inhibitor of the protease form an operon structure which resembles that of staphopain A in S. aureus. The active cysteine protease was detected on the bacterial cell surface as well as in the culture media and is apparently produced in a growth phase-dependent manner, with initial expression occurring in the mid-logarithmic phase. This enzyme, with elastinolytic properties, as well as the ability to cleave a 1 PI, fibrinogen and fibronectin, may possibly contribute to the invasiveness and pathogenic potential of S. epidermidis.
Recombinant proteins (r-proteins) are increasingly important in fundamental research and for clinical applications. As many of these r-proteins are of human or animal origin, cultivated mammalian cells are the host of choice to ensure... more
Recombinant proteins (r-proteins) are increasingly important in fundamental research and for clinical applications. As many of these r-proteins are of human or animal origin, cultivated mammalian cells are the host of choice to ensure their functional folding and proper posttranslational modifications. Large-scale transfection of human embryonic kidney 293 or Chinese hamster ovary cells is now an established technology that can be used in the production of hundreds of milligram to gram quantities of a r-protein in less than 1 mo from cloning of its cDNA. This chapter aims to provide an overview of large-scale transfection technology with a particular emphasis on calcium phosphate and polyethylenimine-mediated gene transfer.
In previous studies it was shown that deletion of the HXK2 gene in Saccharomyces cerevisiae yields a strain that hardly produces ethanol and grows almost exclusively oxidatively in the presence of abundant glucose. This paper reports on... more
In previous studies it was shown that deletion of the HXK2 gene in Saccharomyces cerevisiae yields a strain that hardly produces ethanol and grows almost exclusively oxidatively in the presence of abundant glucose. This paper reports on physiological studies on the hxk2 deletion strain on mixtures of glucose/sucrose, glucose/galactose, glucose/ maltose and glucose/ethanol in aerobic batch cultures. The hxk2 deletion strain co-consumed galactose and sucrose, together with glucose. In addition, co-consumption of glucose and ethanol was observed during the early exponential growth phase. In S. cerevisiae, co-consumption of ethanol and glucose (in the presence of abundant glucose) has never been reported before. The specific respiration rate of the hxk2 deletion strain growing on the glucose/ethanol mixture was 900 mmolemin x1 e(g protein) x1 , which is four to five times higher than that of the hxk2 deletion strain growing oxidatively on glucose, three times higher than its parent growing on ethanol (when respiration is fully derepressed) and is almost 10 times higher than its parent growing on glucose (when respiration is repressed). This indicates that the hxk2 deletion strain has a strongly enhanced oxidative capacity when grown on a mixture of glucose and ethanol.
Keratinocyte culture medium (KCM) has been used for the in vitro culture of keratinocytes and other types of epithelial cells, and the medium includes various ingredients. In this study, two modified KCMs were prepared. In the first,... more
Keratinocyte culture medium (KCM) has been used for the in vitro culture of keratinocytes and other types of epithelial cells, and the medium includes various ingredients. In this study, two modified KCMs were prepared. In the first, insulin, hydrocortisone and antibiotics that are normally included in KCM were replaced with clinically approved pharmaceutical agents, except transferrin and selenium; in the second, cholera toxin (CT) was replaced by L-isoproterenol (ISO). The modified KCMs were then compared to conventional KCM containing laboratory-grade reagents. Induced cell colony formations of canine oral mucosal epithelial cells cultured in both modified KCMs were found to be nearly equivalent to that in the control KCM, and there was no significant difference between the effect of CT and ISO. Canine oral mucosal cells proliferated to confluence in all three KCM formulations, with or without the use of 3T3 feeder layers. Cultured epithelial cells were harvested from temperature-responsive culture surfaces as an intact cell sheet, and the immunohistochemical analysis of the sheets showed that p63 and cytokeratin were expressed in the epithelial cell sheets cultured in all KCMs. Eventually, in the modified KCM formula, fetal bovine serum was replaced by autologous human serum, and the formula was found to be able to fabricate human oral mucosal epithelial cell sheets. These results indicated that the modified KCM was equally efficient as conventional KCM in the fabrication of transplantable stratified epithelial cell sheets.
Aims: The present investigation deals with the development of thermotolerant mutant strain of yeast for studying enhanced productivity of ethanol from molasses in a fully controlled bioreactor. Methods and Results: The parental culture of... more
Aims: The present investigation deals with the development of thermotolerant mutant strain of yeast for studying enhanced productivity of ethanol from molasses in a fully controlled bioreactor. Methods and Results: The parental culture of Saccharomyces cerevisiae ATCC 26602 was mutated using UV treatment. A single thermotolerant mutant was isolated after extensive screening and optimization, and grown on molasses medium in liquid cultures. The mutant was 1AE45-fold improved than its wild parent with respect to ethanol productivity (7AE2 g l )1 h )1 ), product yield (0AE44 g ethanol g )1 substrate utilized) and specific ethanol yield (19AE0 g ethanol g )1 cells). The improved ethanol productivity was directly correlated with titres of intracellular and extracellular invertase activities. The mutant supported higher volumetric and product yield of ethanol, significantly (P £ 0AE05) higher than the parental and other strains. The mutated cultures produced 1AE8-and 2AE6-fold more extracellular and intracellular invertase productivity, respectively, than that produced by its wild parent at 40°C. Thermodynamic studies revealed that the cell system exerted protection against thermal inactivation during formation of products. Conclusions: A mutant derivative of Sacchromyces cerevisiae with improved productivity of ethanol and invertases has been obtained, which showed concomitant improvement in thermostability of endogenous metabolism for formation of both ethanol and invertases. Significance and Impact of the Study: The results of the present study are of commercial value as the mutant can be used for ethanol production in parts of Pakistan where the temperature may go up to 40°C in April. Ethanol product yield coefficient and volumetric productivity, revealed the hyper-productivity of ethanol from molasses at 40°C, which is not appropriate for wild organism.