Calcium Research Papers - Academia.edu (original) (raw)

Previous experimental studies have highlighted that citrulline (CIT) could be a promising pharmaconutrient. However, its pharmacokinetic characteristics and tolerance to loading have not been studied to date. The objective was to... more

Previous experimental studies have highlighted that citrulline (CIT) could be a promising pharmaconutrient. However, its pharmacokinetic characteristics and tolerance to loading have not been studied to date. The objective was to characterise the plasma kinetics of CIT in a multiple-dosing study design and to assess the effect of CIT intake on the concentrations of other plasma amino acids (AA). The effects of CIT loading on anabolic hormones were also determined. Eight fasting healthy males underwent four separate oral loading tests (2, 5, 10 or 15 g CIT) in random order. Blood was drawn ten times over an 8 h period for measurement of plasma AA, insulin and growth hormone (Gh). Urine samples were collected before CIT administration and over the next 24 h. None of the subjects experienced side effects whatever the CIT dose. Concerning AA, only CIT, ornithine (ORN) and arginine (ARG) plasma concentrations were affected (maximum concentration 146 (sem 8) to 303 (sem 11) μmol/l (ARG) a...

Over 1.5 billion people lack the skeletal muscle fast-twitch fibre protein α-actinin-3 due to homozygosity for a common null polymorphism (R577X) in the ACTN3 gene. α-Actinin-3 deficiency is detrimental to sprint performance in elite... more

Over 1.5 billion people lack the skeletal muscle fast-twitch fibre protein α-actinin-3 due to homozygosity for a common null polymorphism (R577X) in the ACTN3 gene. α-Actinin-3 deficiency is detrimental to sprint performance in elite athletes and beneficial to endurance activities. In the human genome, it is very difficult to find single-gene loss-of-function variants that bear signatures of positive selection, yet intriguingly, the ACTN3 null variant has undergone strong positive selection during recent evolution, appearing to provide a survival advantage where food resources are scarce and climate is cold. We have previously demonstrated that α-actinin-3 deficiency in the Actn3 KO mouse results in a shift in fast-twitch fibres towards oxidative metabolism, which would be more "energy efficient" in famine, and beneficial to endurance performance. Prolonged exposure to cold can also induce changes in skeletal muscle similar to those observed with endurance training, and ch...

Although ischemic heart disease is the major cause of death in diabetic patients, diabetic cardiomyopathy (DCM) is increasingly recognized as a clinically relevant entity. Considering that it comprises a variety of mechanisms and effects... more

Although ischemic heart disease is the major cause of death in diabetic patients, diabetic cardiomyopathy (DCM) is increasingly recognized as a clinically relevant entity. Considering that it comprises a variety of mechanisms and effects on cardiac function, increasing the risk of heart failure and worsening the prognosis of this patient category, DCM represents an important complication of diabetes mellitus, with a silent development in its earlier stages, involving intricate pathophysiological mechanisms, including oxidative stress, defective calcium handling, altered mitochondrial function, remodeling of the extracellular matrix, and consequent deficient cardiomyocyte contractility. While DCM is common in diabetic asymptomatic patients, it is frequently underdiagnosed, due to few diagnostic possibilities in its early stages. Moreover, since a strategy for prevention and treatment in order to improve the prognosis of DCM has not been established, it is important to identify clear ...

Relaxin is one of the 6-kDa peptide hormones, which acts as a pleiotropic endocrine and paracrine factor. Our previous studies revealed that sperm capacitating medium containing relaxin induced capacitation and acrosome reaction (AR) in... more

Relaxin is one of the 6-kDa peptide hormones, which acts as a pleiotropic endocrine and paracrine factor. Our previous studies revealed that sperm capacitating medium containing relaxin induced capacitation and acrosome reaction (AR) in fresh and frozen-thawed porcine or bovine spermatozoa. However, the intracellular signaling cascades involved with capacitation or AR induced by relaxin was unknown. Therefore, the present study was designed to investigate the intracellular signaling cascades involved with capacitation and AR induced by relaxin in fresh and frozen-thawed bovine spermatozoa. Spermatozoa were incubated in sperm Tyrode's albumin lactate pyruvate (Sp-TALP) medium supplemented with (40 ng ml(-1)) or without relaxin, and subjected to evaluation of chlortetracycline staining pattern, cholesterol efflux, Ca(2+)-influx, intracellular cyclic adenosine monophosphate (cAMP) and protein tyrosine phosphorylation. Capacitation and AR were increased (P<0.05) in both fresh and frozen-thawed spermatozoa incubated with relaxin. Cholesterol effluxes were greater in the fresh (P<0.01) and frozen-thawed (P<0.05) spermatozoa incubated with relaxin than the spermatozoa incubated without relaxin. Ca(2+)-influxes were also significantly stimulated by relaxin in the fresh (P<0.01) and frozen-thawed (P<0.05) spermatozoa. The Sp-TALP medium containing relaxin influenced the generation of intracellular cAMP in the fresh (P<0.01) and frozen-thawed (P<0.05) spermatozoa, and exhibited higher exposure of protein tyrosine phosphorylation in both sperm types than the medium devoid of relaxin. Therefore, the results postulate that relaxin exerts the intracellular signaling cascades involved with capacitation and AR through accelerating the cholesterol efflux, Ca(2+)-influx, intracellular cAMP and protein tyrosine phosphorylation in fresh and frozen-thawed bovine spermatozoa.

Dental disease is considered as one of the, if not, the most common disorders seen in pet rabbits. This article provides a review of the scientific literature and an overview of the peculiarities of calcium homeostasis in the rabbit in an... more

Dental disease is considered as one of the, if not, the most common disorders seen in pet rabbits. This article provides a review of the scientific literature and an overview of the peculiarities of calcium homeostasis in the rabbit in an attempt to draw together current thinking on the cause of dental disease. A complete understanding of the aetiology and pathophysiology of rabbit dental disease is necessary for the veterinary practitioner to establish a proper therapeutic plan, prognosis and ultimately prevention of this common cause of morbidity and mortality in pet rabbits.

Abstract: Minimally invasive parathyroidectomy is an accepted treatment option for primary hyperparathyroidism. The need for intraoperative parathyroid hormone assays (iPTH) to confirm adenoma removal remains controversial. We studied... more

Abstract: Minimally invasive parathyroidectomy is an accepted treatment option for primary hyperparathyroidism. The need for intraoperative parathyroid hormone assays (iPTH) to confirm adenoma removal remains controversial. We studied minimally invasive radio-...

Endothelin-1 (ET-1), a potent endothelium-derived vasoconstrictor peptide, is secreted in response to insulin. Elevated circulating ET-1 levels have been found in patients with diabetes mellitus and vascular dysfunction. The question... more

Endothelin-1 (ET-1), a potent endothelium-derived vasoconstrictor peptide, is secreted in response to insulin. Elevated circulating ET-1 levels have been found in patients with diabetes mellitus and vascular dysfunction. The question arises whether ET-1 acts as a direct modulator of insulin secretion. To test this, we studied the effects of ET-1 on isolated mouse islets of Langerhans. ET-1 (1 nmol/l-1 Μmol/l) dose-dependently stimulated insulin secretion from islets incubated in the presence of 16.7 mmol/l glucose (p<0.05). The effect of ET-1 is glucose-dependent since no potentiation was found at 3.3 mmol/l glucose. Furthermore, ET-1 induced a large, transient increase in glucose-stimulated insulin secretion during islet perifusion in the presence (p<0.001), but not in the absence, of extracellular Ca2+. The rate of 45Ca2+-efflux from 45Ca2+-prelabelled islets was transiently stimulated by ET-1 during perifusion at 16.7 mmol/l glucose in the presence of extracellular Ca2+ (p<0.001). A short-lived increase in 45Ca2+-efflux was also observed in the absence of extracellular Ca2+ (p<0.05). It is suggested that the effects of ET-1 on insulin secretion are critically dependent on influx via Ca2+-channels. In addition, ET-1 transiently enhanced 86Rb+-efflux from 86Rb+-prelabelled islets both in the presence (p<0.001) and in the absence (p<0.001) of extracellular Ca2+ suggesting that ET-1 does not elicit insulin secretion by inhibition of the potassium permeability. Our study provides evidence that ET-1 stimulates insulin secretion via a direct effect on the islets of Langerhans.

Magnesium and oxidative status were investigated in young volunteers exposed to chronic stress (political intolerance, awareness of potential military attacks, permanent stand-by duty and reduced holidays more than 10 years) or subchronic... more

Magnesium and oxidative status were investigated in young volunteers exposed to chronic stress (political intolerance, awareness of potential military attacks, permanent stand-by duty and reduced holidays more than 10 years) or subchronic stress consisting of everyday mortal danger in military actions lasting more than 3 months. Significant decreases in plasma ionized Mg2+, total Mg and ionized Ca2+ concentrations were found in both groups. Similarly, both study groups exhibited oxidative stress as assessed by increased plasma superoxide anions and malondialdehyde and modified antioxidant defense. There were no significant differences between the two stress groups. A negative correlation between magnesium balance and oxidative stress was observed suggesting that the same etiological factor (chronic stress) initiate decreases in both free and total magnesium concentrations and simultaneously increase oxidative stress intensity. These findings support the need for magnesium supplement...

The neural cell adhesion molecule L1 is a cell surface glycoprotein of the immunoglobulin superfamily which mediates adhesion between neural cells. The possibility that similar cell-cell recognition mechanisms may be shared by the nervous... more

The neural cell adhesion molecule L1 is a cell surface glycoprotein of the immunoglobulin superfamily which mediates adhesion between neural cells. The possibility that similar cell-cell recognition mechanisms may be shared by the nervous and immune systems prompted us to study the expression and function of L1 in cells of the hematopoietic system. Immunofluorescence analysis using monoclonal L1 antibody revealed that the molecule is expressed in the bone marrow, spleen, and thymus of the mouse. This observation was confirmed by amplifying cDNA derived from these organs by the polymerase chain reaction with L1-specific oligonucleotide primers. Two-color fluorescence analysis indicated that bone marrow lymphoid and granulocyte precursor cells express low and high levels of L1, respectively. In the thymus L1 is primarily expressed by mature cells that have a strong expression of CD3 and in the spleen both B cells and T cells express L1.The possible function of L1 in lymphoid cells was studied using subcloned ESb-MP lymphoma cells having high or low densities of L1 on the cell surface as well as activated splenic B lymphoblasts. Parental and subcloned ESb-MP cells that strongly expressed L1 could form homotypic aggregates in the presence of low Ca2+ levels, whereas subcloned ESb-MP cells with a weak expression of L1 did not aggregate, suggesting that L1 mediates the Ca2+-independent aggregation of the parental ESb-MP cells. Furthermore, the aggregation of activated B lymphoblasts under physiological concentrations of Ca2+ and Mg2+ was inhibited by 30% in the presence of Fab fragments of polyclonal L1 antibodies, implying that L1 also mediates adhesion among normal lymphoid cells. A possible role of L1 on lymphocytes in stimulating the innervation of lymphoid organs is discussed.

Store-operated calcium entry (SOCE) is the predominant Ca2+ entry mechanism in nonexcitable cells and controls a variety of physiological and pathological processes. Although significant progress has been made in identifying the... more

Store-operated calcium entry (SOCE) is the predominant Ca2+ entry mechanism in nonexcitable cells and controls a variety of physiological and pathological processes. Although significant progress has been made in identifying the components required for SOCE, the molecular mechanisms underlying it are elusive. The present study provides evidence for a direct involvement of kinase suppressor of Ras 2 (KSR2) in SOCE. Using lymphocytes and fibroblasts from ksr2−/− mice and shKSR2-depleted cells, we find that KSR2 is critical for the elevation of cytosolic Ca2+ concentration. Specifically, our results show that although it is dispensable for Ca2+-store depletion, KSR2 is required for optimal calcium entry. We observe that KSR2 deficiency affects stromal interaction molecule 1 (STIM1)/ORAI1 puncta formation, which is correlated with cytoskeleton disorganization. Of interest, we find that KSR2-associated calcineurin is crucial for SOCE. Blocking calcineurin activity impairs STIM1/ORAI1 pun...