Traditional Uses, Phytochemistry, and Pharmacology of Olea europaea (Olive) (original) (raw)

1. Grohmann F. Oleaceae. Flora of Pakistan. 1981;59:p. 9. [Google Scholar]

2. Cronquist A. An Integrated System of Classification of Flowering Plants. Columbia University Press; 1981. [Google Scholar]

3. Bianco A. Atta-ur-Rahman. Studies in Natural Products Chemistry. Vol. 32. Amsterdam, The Netherlands: Elsevier Science; 1990. [Google Scholar]

4. USDA. National Genetic Resources Program. Germplasm Resources Information Network—(GRIN), 2003.

5. Bartolini G., Petruccelli R. Classification, Origin, Diffusion and History of the Olive. Rome, Italy: Food and Agriculture Organization of the United Nations; 2002. [Google Scholar]

6. Wallander E., Albert V. A. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. American Journal of Botany. 2000;87(12):1827–1841. doi: 10.2307/2656836. [PubMed] [CrossRef] [Google Scholar]

7. Pérez J. A., Hernández J. M., Trujillo J. M., López H. Iridoids and secoiridoids from Oleaceae. Studies in Natural Products Chemistry. 2005;32:303–363. doi: 10.1016/s1572-5995(05)80059-6. [CrossRef] [Google Scholar]

8. Médail F., Quézel P., Besnard G., Khadari B. Systematics, ecology and phylogeographic significance of Olea europaea L. ssp. maroccana (Greuter & Burdet) P. Vargas et al., a relictual olive tree in South-west Morocco. Botanical Journal of the Linnean Society. 2001;137(3):249–266. doi: 10.1006/bojl.2001.0477. [CrossRef] [Google Scholar]

9. Bracci T., Busconi M., Fogher C., Sebastiani L. Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Reports. 2011;30(4):449–462. doi: 10.1007/s00299-010-0991-9. [PubMed] [CrossRef] [Google Scholar]

10. Kaniewski D., van Campo E., Boiy T., Terral J.-F., Khadari B., Besnard G. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East. Biological Reviews. 2012;87(4):885–899. doi: 10.1111/j.1469-185x.2012.00229.x. [PubMed] [CrossRef] [Google Scholar]

11. Sarwar M. The theatrical usefulness of olive Olea europaea L.(Oleaceae family) nutrition in human health: a review. Sky Journal of Medicinal Plant Research. 2013;2(1):1–4. [Google Scholar]

12. Zohary D., Hopf M., Weiss E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford, UK: Oxford University Press; 2012. [Google Scholar]

13. Ryan D., Robards K. Phenolic compounds in olives. Analyst. 1998;123(5):31R–44R. doi: 10.1039/a708920a. [CrossRef] [Google Scholar]

14. Kanakis P., Termentzi A., Michel T., Gikas E., Halabalaki M., Skaltsounis A.-L. From olive drupes to olive Oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Medica. 2013;79(16):1576–1587. doi: 10.1055/s-0033-1350823. [PubMed] [CrossRef] [Google Scholar]

15. Sibbett G. S., Ferguson L., Lindstrand M. Olive Production Manual. University of California, Department of Agriculture and Natural Resources; 2005. [Google Scholar]

16. Parras Rosa M. La domanda di olii d’oliva. Olivæ 1996;63:24–33. [Google Scholar]

17. Bonazzi M. Euro-Mediterranean policies and olive oil: competition or job sharing? Olivae. 1997;65:16–20. [Google Scholar]

18. Bendini A., Cerretani L., Carrasco-Pancorbo A., et al. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules. 2007;12(8):1679–1719. doi: 10.3390/12081679. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Ghisalberti E. L. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine. 1998;5(2):147–163. doi: 10.1016/s0944-7113(98)80012-3. [PubMed] [CrossRef] [Google Scholar]

20. Soler-Rivas C., Espin J. C., Wichers H. J. Oleuropein and related compounds. Journal of the Science of Food and Agriculture. 2000;80(7):1013–1023. [Google Scholar]

21. Omar S. H. Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica. 2010;78(2):133–154. doi: 10.3797/scipharm.0912-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Erbay Z., Icier F. The importance and potential uses of olive leaves. Food Reviews International. 2010;26(4):319–334. doi: 10.1080/87559129.2010.496021. [CrossRef] [Google Scholar]

23. Galanakis C. M. Olive fruit dietary fiber: components, recovery and applications. Trends in Food Science & Technology. 2011;22(4):175–184. doi: 10.1016/j.tifs.2010.12.006. [CrossRef] [Google Scholar]

24. Obied H. K., Allen M. S., Bedgood D. R., Prenzler P. D., Robards K., Stockmann R. Bioactivity and analysis of biophenols recovered from olive mill waste. Journal of Agricultural and Food Chemistry. 2005;53(4):823–837. doi: 10.1021/jf048569x. [PubMed] [CrossRef] [Google Scholar]

25. Saija A., Uccella N. Olive biophenols: functional effects on human wellbeing. Trends in Food Science and Technology. 2000;11(9-10):357–363. doi: 10.1016/s0924-2244(00)00068-6. [CrossRef] [Google Scholar]

26. El S. N., Karakaya S. Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutrition Reviews. 2009;67(11):632–638. doi: 10.1111/j.1753-4887.2009.00248.x. [PubMed] [CrossRef] [Google Scholar]

27. Kalua C. M., Allen M. S., Bedgood D. R., Jr., Bishop A. G., Prenzler P. D., Robards K. Olive oil volatile compounds, flavour development and quality: a critical review. Food Chemistry. 2007;100(1):273–286. doi: 10.1016/j.foodchem.2005.09.059. [CrossRef] [Google Scholar]

28. Khan Y., Panchal S., Vyas N., Butani A., Kumar V. Olea europaea: a phyto-pharmacological review. Pharmacognosy Reviews. 2007;1(1):114–118. [Google Scholar]

29. Cicerale S., Conlan X. A., Sinclair A. J., Keast R. S. J. Chemistry and health of olive oil phenolics. Critical Reviews in Food Science and Nutrition. 2009;49(3):218–236. doi: 10.1080/10408390701856223. [PubMed] [CrossRef] [Google Scholar]

30. Ali S. I., Agricultural Research Council . Flora of Pakistan. Pakistan Agricultural Research Council; 1982. [Google Scholar]

31. Shu M. X. L. Olea. Flora of China. 1996;15:295–298. [Google Scholar]

32. Ayerza R., Coates W. Supplemental pollination—increasing olive (Olea europaea) yields in hot, arid environments. Experimental Agriculture. 2004;40(4):481–491. doi: 10.1017/s0014479704002133. [CrossRef] [Google Scholar]

33. Besnard G., Khadari B., Villemur P., Bervillé A. Cytoplasmic male sterility in the olive (Olea europaea L.) Theoretical and Applied Genetics. 2000;100(7):1018–1024. doi: 10.1007/s001220051383. [CrossRef] [Google Scholar]

34. Kumar S., Kahlon T., Chaudhary S. A rapid screening for adulterants in olive oil using DNA barcodes. Food Chemistry. 2011;127(3):1335–1341. doi: 10.1016/j.foodchem.2011.01.094. [PubMed] [CrossRef] [Google Scholar]

35. Liphschitz N., Gophna R., Hartman M., Biger G. The beginning of olive (Olea europaea) cultivation in the old world: a reassessment. Journal of Archaeological Science. 1991;18(4):441–453. doi: 10.1016/0305-4403(91)90037-p. [CrossRef] [Google Scholar]

36. Gooch E. Ten Plus One Things You May Not Know about Olive. Epikouria Magazine, Triaina Publishers; 2005. [Google Scholar]

37. Galili E., Stanley D. J., Sharvit J., Weinstein-Evron M. Evidence for earliest olive-oil production in submerged settlements off the Carmel Coast, Israel. Journal of Archaeological Science. 1997;24(12):1141–1150. doi: 10.1006/jasc.1997.0193. [CrossRef] [Google Scholar]

38. Chiappetta A., Muzzalupo I. Olive Germplasm—The Olive Cultivation, Table Olive and Olive Oil Industry in Italy. InTech; 2012. Botanical description. [CrossRef] [Google Scholar]

39. Wise W. E. Fray Junípero Serra and the California Conquest. New York, NY, USA: Scribner; 1967. [Google Scholar]

40. Besnard G., Baradat P., Bervillé A. Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theoretical and Applied Genetics. 2001;102(2-3):251–258. doi: 10.1007/s001220051642. [CrossRef] [Google Scholar]

41. Ghanbari R., Anwar F., Alkharfy K. M., Gilani A.-H., Saari N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—a review. International Journal of Molecular Sciences. 2012;13(3):3291–3340. doi: 10.3390/ijms13033291. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Bartolini G., Prevost G., Messeri C., Carignani G. Olive Germplasm: Cultivars and World-Wide Collections. 1998. [Google Scholar]

43. Ganino T., Bartolini G., Fabbri A. The classification of olive germplasm—a review. Journal of Horticultural Science and Biotechnology. 2006;81(3):319–334. [Google Scholar]

44. Obied H. K. Biography of biophenols: past, present and future. Functional Foods in Health and Disease. 2013;3(6):230–241. [Google Scholar]

45. Jerman T., Trebše P., Vodopivec B. M. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chemistry. 2010;123(1):175–182. doi: 10.1016/j.foodchem.2010.04.006. [CrossRef] [Google Scholar]

46. Tsukamoto H., Hisada S., Nishibe S. Lignans from bark of the Olea plants. I. Chemical and Pharmaceutical Bulletin. 1984;32(7):2730–2735. doi: 10.1248/cpb.32.2730. [PubMed] [CrossRef] [Google Scholar]

47. Pérez-Bonilla M., Salido S., van Beek T. A., et al. Isolation and identification of radical scavengers in olive tree (Olea europaea) wood. Journal of Chromatography A. 2006;1112(1-2):311–318. doi: 10.1016/j.chroma.2005.12.055. [PubMed] [CrossRef] [Google Scholar]

48. Tsukamoto H., Hisada S., Nishibe S. Coumarin and secoiridoid glucosides from bark of Olea africana and Olea capensis. Chemical & Pharmaceutical Bulletin. 1985;33(1):396–399. doi: 10.1248/cpb.33.396. [CrossRef] [Google Scholar]

49. Tsukamoto H., Hisada S., Nishibe S., Roux D. G. Phenolic glucosides from Olea europaea subs. africana. Phytochemistry. 1984;23(12):2839–2841. doi: 10.1016/0031-9422(84)83025-3. [CrossRef] [Google Scholar]

50. Tsukamoto H., Hisada S., Nishibe S., Roux D. G., Rourke J. P. Coumarins from Olea africana and Olea capensis. Phytochemistry. 1984;23(3):699–700. doi: 10.1016/s0031-9422(00)80417-3. [CrossRef] [Google Scholar]

51. Chiba M., Okabe K., Hisada S., Shima K., Takemoto T., Nishibe S. Elucidation of the structure of a new lignan glucoside from olea europaea by carbon-13 nuclear magnetic resonance spectroscopy. Chemical & Pharmaceutical Bulletin. 1979;27(11):2868–2873. doi: 10.1248/cpb.27.2868. [CrossRef] [Google Scholar]

52. Bianco A., Scalzo R. L., Scarpati M. L. Isolation of cornoside from Olea europaea and its transformation into halleridone. Phytochemistry. 1993;32(2):455–457. doi: 10.1016/s0031-9422(00)95015-5. [CrossRef] [Google Scholar]

53. Esti M., Cinquanta L., La Notte E. Phenolic compounds in different olive varieties. Journal of Agricultural and Food Chemistry. 1998;46(1):32–35. doi: 10.1021/jf970391. [PubMed] [CrossRef] [Google Scholar]

54. Bianco A., Uccella N. Biophenolic components of olives. Food Research International. 2000;33(6):475–485. doi: 10.1016/S0963-9969(00)00072-7. [CrossRef] [Google Scholar]

55. Owen R. W., Haubner R., Mier W., et al. Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes. Food and Chemical Toxicology. 2003;41(5):703–717. doi: 10.1016/s0278-6915(03)00011-5. [PubMed] [CrossRef] [Google Scholar]

56. Peralbo-Molina Á., Priego-Capote F., de Castro M. D. L. Tentative identification of phenolic compounds in olive pomace extracts using liquid chromatography-tandem mass spectrometry with a quadrupole-quadrupole-time-of-flight mass detector. Journal of Agricultural and Food Chemistry. 2012;60(46):11542–11550. doi: 10.1021/jf302896m. [PubMed] [CrossRef] [Google Scholar]

57. Savarese M., de Marco E., Sacchi R. Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry. Food Chemistry. 2007;105(2):761–770. doi: 10.1016/j.foodchem.2007.01.037. [CrossRef] [Google Scholar]

58. Bianco A., Chiacchio M. A., Grassi G., Iannazzo D., Piperno A., Romeo R. Phenolic components of Olea europea. Isolation of new tyrosol and hydroxytyrosol derivatives. Food Chemistry. 2006;95(4):562–565. doi: 10.1016/j.foodchem.2004.12.033. [CrossRef] [Google Scholar]

59. Bianco A., Melchioni C., Ramunno A., Romeo G., Uccella N. Phenolic components of _Olea europaea_—isolation of tyrosol derivatives. Natural Product Research. 2004;18(1):29–32. doi: 10.1080/1478641031000111570. [PubMed] [CrossRef] [Google Scholar]

60. Maestroduran R., Leoncabello R., Ruizgutierrez V., Fiestas P., Vazquezroncero A. Bitter phenolic glucosides from seeds of olive (Olea europaea) Grasas y Aceites. 1994;45(5):332–335. [Google Scholar]

61. Bastoni L., Bianco A., Piccioni F., Uccella N. Biophenolic profile in olives by nuclear magnetic resonance. Food Chemistry. 2001;73(2):145–151. doi: 10.1016/S0308-8146(00)00250-8. [CrossRef] [Google Scholar]

62. Bianco A., Buiarelli F., Cartoni G. P., Coccioli F., Jasionowska R., Margherita P. Analysis by liquid chromatography-tandem mass spectrometry of biophenolic compounds in olives and vegetation waters, Part I. Journal of Separation Science. 2003;26(5):409–416. doi: 10.1002/jssc.200390053. [CrossRef] [Google Scholar]

63. Bianco A., Buiarelli F., Cartoni G. P., Coccioli F., Jasionowska R., Margherita P. Analysis by liquid chromatography-tandem mass spectrometry of biophenolic compounds in virgin olive oil, Part II. Journal of Separation Science. 2003;26(5):417–424. doi: 10.1002/jssc.200390054. [CrossRef] [Google Scholar]

64. Bianchi G., Pozzi N. 3,4-Dihydroxyphenylglycol, a major C6-C2 phenolic in Olea europaea fruits. Phytochemistry. 1994;35(5):1335–1337. doi: 10.1016/s0031-9422(00)94849-0. [CrossRef] [Google Scholar]

65. Rodríguez G., Lama A., Jaramillo S., et al. 3,4-Dihydroxyphenylglycol (DHPG): an important phenolic compound present in natural table olives. Journal of Agricultural and Food Chemistry. 2009;57(14):6298–6304. doi: 10.1021/jf803512r. [PubMed] [CrossRef] [Google Scholar]

66. Vlahov G., Schiavone C., Simone N. Triacylglycerols of the olive fruit (Olea europaea L.): characterization of mesocarp and seed triacylglycerols in different cultivars by liquid chromatography and13C NMR spectroscopy. Fett-Lipid. 1999;101(4):146–150. [Google Scholar]

67. Bianco A., Mazzei R. A., Melchioni C., Scarpati M. L., Romeo G., Uccella N. Microcomponents of olive oil. Part II. Digalactosyldiacylglycerols from Olea europaea. Food Chemistry. 1998;62(3):343–346. doi: 10.1016/s0308-8146(97)00192-1. [CrossRef] [Google Scholar]

68. Sakouhi F., Absalon C., Kallel H., Boukhchina S. Comparative analysis of triacylglycerols from Olea europaea L. fruits using HPLC and MALDI-TOFMS. European Journal of Lipid Science and Technology. 2010;112(5):574–579. doi: 10.1002/ejlt.200900079. [CrossRef] [Google Scholar]

69. Marra C., Giordano M. E. A new diacylglycerol from fresh olive pulp. Natural Product Research. 2005;19(1):81–85. doi: 10.1080/14786410410001686382. [PubMed] [CrossRef] [Google Scholar]

70. Procopio A., Alcaro S., Nardi M., et al. Synthesis, biological evaluation, and molecular modeling of oleuropein and its semisynthetic derivatives as cyclooxygenase inhibitors. Journal of Agricultural and Food Chemistry. 2009;57(23):11161–11167. doi: 10.1021/jf9033305. [PubMed] [CrossRef] [Google Scholar]

71. Nenadis N., Tsimidou M. Z. Recent Progress in Medicinal Plants, Chemistry and Medicinal Value. Houston, Tex, USA: Studium Press LLC; 2009. Oleuropein and related secoiridoids. Antioxidant activity and sources other than Olea europaea L. (olive tree) pp. 53–74. [Google Scholar]

72. Haloui E., Marzouk B., Marzouk Z., Bouraoui A., Fenina N. Hydroxytyrosol and oleuropein from olive leaves: potent anti-inflammatory and analgesic activities. Journal of Food, Agriculture & Environment. 2011;9(3-4):128–133. [Google Scholar]

73. Cardoso S. M., Falcão S. I., Peres A. M., Domingues M. R. M. Oleuropein/ligstroside isomers and their derivatives in Portuguese olive mill wastewaters. Food Chemistry. 2011;129(2):291–296. doi: 10.1016/j.foodchem.2011.04.049. [PubMed] [CrossRef] [Google Scholar]

74. Aouidi F., Dupuy N., Artaud J., et al. Rapid quantitative determination of oleuropein in olive leaves (Olea europaea) using mid-infrared spectroscopy combined with chemometric analyses. Industrial Crops and Products. 2012;37(1):292–297. doi: 10.1016/j.indcrop.2011.12.024. [CrossRef] [Google Scholar]

75. lo Scalzo R., Scarpati M. L. A new secoiridoid from olive wastewaters. Journal of Natural Products. 1993;56(4):621–623. doi: 10.1021/np50094a026. [CrossRef] [Google Scholar]

76. Servili M., Baldioli M., Selvaggini R., Macchioni A., Montedoro G. Phenolic compounds of olive fruit: one- and two-dimensional nuclear magnetic resonance characterization of nuzhenide and its distribution in the constitutive parts of fruit. Journal of Agricultural and Food Chemistry. 1999;47(1):12–18. doi: 10.1021/jf9806210. [PubMed] [CrossRef] [Google Scholar]

77. Gentile L., Uccella N. A. Selected bioactives from callus cultures of olives (Olea europaea L. Var. Coratina) by LC-MS. Food Research International. 2014;55:128–136. doi: 10.1016/j.foodres.2013.10.046. [CrossRef] [Google Scholar]

78. Paiva-Martins F., Pinto M. Isolation and characterization of a new hydroxytyrosol derivative from olive (Olea europaea) leaves. Journal of Agricultural and Food Chemistry. 2008;56(14):5582–5588. doi: 10.1021/jf800698y. [PubMed] [CrossRef] [Google Scholar]

79. Paiva-Martins F., Rodrigues V., Calheiros R., Marques M. P. M. Characterization of antioxidant olive oil biophenols by spectroscopic methods. Journal of the Science of Food and Agriculture. 2011;91(2):309–314. doi: 10.1002/jsfa.4186. [PubMed] [CrossRef] [Google Scholar]

80. Bouaziz M., Grayer R. J., Simmonds M. S. J., Damak M., Sayadi S. Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar Chemlali growing in Tunisia. Journal of Agricultural and Food Chemistry. 2005;53(2):236–241. doi: 10.1021/jf048859d. [PubMed] [CrossRef] [Google Scholar]

81. Meirinhos J., Silva B. M., Valentão P., et al. Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea europaea L.) leaf cultivars. Natural Product Research. 2005;19(2):189–195. doi: 10.1080/14786410410001704886. [PubMed] [CrossRef] [Google Scholar]

82. Sakouhi F., Absalon C., Sebei K., Fouquet E., Boukhchina S., Kallel H. Gas chromatographic-mass spectrometric characterisation of triterpene alcohols and monomethylsterols in developing Olea europaea L. fruits. Food Chemistry. 2009;116(1):345–350. doi: 10.1016/j.foodchem.2009.01.094. [CrossRef] [Google Scholar]

83. Guinda Á., Rada M., Delgado T., Gutiérrez-Adánez P., Castellano J. M. Pentacyclic triterpenoids from olive fruit and leaf. Journal of Agricultural and Food Chemistry. 2010;58(17):9685–9691. doi: 10.1021/jf102039t. [PubMed] [CrossRef] [Google Scholar]

84. Gil M., Haïdour A., Ramos J. L. Two glutaric acid derivatives from olives. Phytochemistry. 1998;49(5):1311–1315. doi: 10.1016/s0031-9422(97)01066-2. [CrossRef] [Google Scholar]

85. Bianchi G., Murelli C., Vlahov G. Surface waxes from olive fruits. Phytochemistry. 1992;31(10):3503–3506. doi: 10.1016/0031-9422(92)83716-c. [CrossRef] [Google Scholar]

86. Vlahov G., Rinaldi G., del Re P., Giuliani A. A. 13C nuclear magnetic resonance spectroscopy for determining the different components of epicuticular waxes of olive fruit (Olea europaea) Dritta cultivar. Analytica Chimica Acta. 2008;624(2):184–194. doi: 10.1016/j.aca.2008.06.049. [PubMed] [CrossRef] [Google Scholar]

87. Wang X.-F., Li C., Shi Y.-P., Di D.-L. Two new secoiridoid glycosides from the leaves of Olea europaea L. Journal of Asian Natural Products Research. 2009;11(11):940–944. doi: 10.1080/10286020903310979. [PubMed] [CrossRef] [Google Scholar]

88. Golubev V. N., Gusar Z. D., Mamedov E. S. Tocopherols of Olea europaea. Chemistry of Natural Compounds. 1987;23(1):119–120. doi: 10.1007/bf00602478. [CrossRef] [Google Scholar]

89. Gómez-González S., Ruiz-Jiménez J., Priego-Capote F., de Castro M. D. L. Qualitative and quantitative sugar profiling in olive fruits, leaves, and stems by gas chromatography-tandem mass spectrometry (GC-MS/MS) after ultrasound-assisted leaching. Journal of Agricultural and Food Chemistry. 2010;58(23):12292–12299. doi: 10.1021/jf102350s. [PubMed] [CrossRef] [Google Scholar]

90. Ryan D., Robards K., Prenzler P., Jardine D., Herlt T., Antolovich M. Liquid chromatography with electrospray ionisation mass spectrometric detection of phenolic compounds from Olea europaea. Journal of Chromatography A. 1999;855(2):529–537. doi: 10.1016/s0021-9673(99)00719-0. [PubMed] [CrossRef] [Google Scholar]

91. Savournin C., Baghdikian B., Elias R., Dargouth-Kesraoui F., Boukef K., Balansard G. Rapid high-performance liquid chromatography analysis for the quantitative determination of oleuropein in Olea europaea leaves. Journal of Agricultural and Food Chemistry. 2001;49(2):618–621. doi: 10.1021/jf000596. [PubMed] [CrossRef] [Google Scholar]

92. Charoenprasert S., Mitchell A. Factors influencing phenolic compounds in table olives (Olea europaea) Journal of Agricultural and Food Chemistry. 2012;60(29):7081–7095. doi: 10.1021/jf3017699. [PubMed] [CrossRef] [Google Scholar]

93. Kuwajima H., Uemura T., Takaishi K., Inoue K., Inouyet H. A secoiridoid glucoside from Olea europaea. Phytochemistry. 1988;27(6):1757–1759. doi: 10.1016/0031-9422(88)80438-2. [CrossRef] [Google Scholar]

94. Karioti A., Chatzopoulou A., Bilia A. R., Liakopoulos G., Stavrianakou S., Skaltsa H. Novel secoiridoid glucosides in Olea europaea leaves suffering from boron deficiency. Bioscience, Biotechnology and Biochemistry. 2006;70(8):1898–1903. doi: 10.1271/bbb.60059. [PubMed] [CrossRef] [Google Scholar]

95. Gariboldi P., Jommi G., Verotta L. Secoiridoids from Olea europaea. Phytochemistry. 1986;25(4):865–869. doi: 10.1016/0031-9422(86)80018-8. [CrossRef] [Google Scholar]

96. Hansen K., Adsersen A., Christensen S. B., Jensen S. R., Nyman U., Smitt U. W. Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europaea and Olea lancea. Phytomedicine. 1996;2(4):319–325. doi: 10.1016/s0944-7113(96)80076-6. [PubMed] [CrossRef] [Google Scholar]

97. Mussini P., Orsini F., Pelizzoni F. Triterpenes in leaves of Olea europaea. Phytochemistry. 1975;14(4):p. 1135. [Google Scholar]

98. Movsumov I. S., Aliev A. M. Oleanolic and maslinic acids of the fruit of Olea europaea. Chemistry of Natural Compounds. 1985;21(1):125–126. doi: 10.1007/bf00574276. [CrossRef] [Google Scholar]

99. Sultana N., Ata A. Oleanolic acid and related derivatives as medicinally important compounds. Journal of Enzyme Inhibition and Medicinal Chemistry. 2008;23(6):739–756. doi: 10.1080/14756360701633187. [PubMed] [CrossRef] [Google Scholar]

100. Komaki E., Yamaguchi S., Maru I., et al. Identification of anti-_α_-amylase components from olive leaf extracts. Food Science and Technology Research. 2003;9(1):35–39. doi: 10.3136/fstr.9.35. [CrossRef] [Google Scholar]

101. Duquesnoy E., Castola V., Casanova J. Triterpenes in the hexane extract of leaves of Olea europaea L.: analysis using 13C-NMR spectroscopy. Phytochemical Analysis. 2007;18(4):347–353. doi: 10.1002/pca.989. [PubMed] [CrossRef] [Google Scholar]

102. Romero C., García A., Medina E., Ruíz-Méndez M. V., de Castro A., Brenes M. Triterpenic acids in table olives. Food Chemistry. 2010;118(3):670–674. doi: 10.1016/j.foodchem.2009.05.037. [CrossRef] [Google Scholar]

103. Movsumov I. S. Components of the leaves of Olea verrucosa. Chemistry of Natural Compounds. 1994;30(5):p. 626. doi: 10.1007/bf00629879. [CrossRef] [Google Scholar]

104. Bianchi G., Pozzi N., Vlahov G. Pentacyclic triterpene acids in olives. Phytochemistry. 1994;37(1):205–207. doi: 10.1016/0031-9422(94)85026-7. [CrossRef] [Google Scholar]

105. Schumacher B., Scholle S., Hölzl J., Khudeir N., Hess S., Müller C. E. Lignans isolated from Valerian: identification and characterization of a new olivil derivative with partial agonistic activity at A1 adenosine receptors. Journal of Natural Products. 2002;65(10):1479–1485. doi: 10.1021/np010464q. [PubMed] [CrossRef] [Google Scholar]

106. Campeol E., Flamini G., Cioni P. L., Morelli I., D'Andrea F., Cremonini R. 1,5-Anhydroxylitol from leaves of Olea europaea. Carbohydrate Research. 2004;339(16):2731–2732. doi: 10.1016/j.carres.2004.09.001. [PubMed] [CrossRef] [Google Scholar]

107. Paiva-Martins F., Gordon M. H. Isolation and characterization of the antioxidant component 3,4-dihydroxyphenylethyl 4-formyl-3-formylmethyl-4-hexenoate from olive (Olea europaea) leaves. Journal of Agricultural and Food Chemistry. 2001;49(9):4214–4219. doi: 10.1021/jf010373z. [PubMed] [CrossRef] [Google Scholar]

108. Guinda Á., Lanzón A., Rios J. J., Albi T. The isolation and quantification of the components from olive leaf: hexane extract. Grasas y Aceites. 2002;53(4):419–422. [Google Scholar]

109. Cicerale S., Lucas L., Keast R. Biological activities of phenolic compounds present in virgin olive oil. International Journal of Molecular Sciences. 2010;11(2):458–479. doi: 10.3390/ijms11020458. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Christophoridou S., Dais P., Tseng L. I.-H., Spraul M. Separation and identification of phenolic compounds in olive oil by coupling high-performance liquid chromatography with postcolumn solid-phase extraction to nuclear magnetic resonance spectroscopy (LC-SPE-NMR) Journal of Agricultural and Food Chemistry. 2005;53(12):4667–4679. doi: 10.1021/jf040466r. [PubMed] [CrossRef] [Google Scholar]

111. Pérez-Trujillo M., Gómez-Caravaca A. M., Segura-Carretero A., Fernández-Gutiérrez A., Parella T. Separation and identification of phenolic compounds of extra virgin olive oil from Olea Europaea L. by HPLC-DAD-SPE-NMR/MS. Identification of a new diastereoisomer of the aldehydic form of oleuropein aglycone. Journal of Agricultural and Food Chemistry. 2010;58(16):9129–9136. doi: 10.1021/jf101847e. [PubMed] [CrossRef] [Google Scholar]

112. Rodríguez G., Lama A., Trujillo M., Espartero J. L., Fernández-Bolaños J. Isolation of a powerful antioxidant from Olea europaea fruit-mill waste: 3,4-Dihydroxyphenylglycol. LWT—Food Science and Technology. 2009;42(2):483–490. doi: 10.1016/j.lwt.2008.08.015. [CrossRef] [Google Scholar]

113. Montedoro G., Servili M., Baldioli M., Selvaggini R., Miniati E., Macchioni A. Simple and hydrolyzable compounds in virgin olive oil. 3. Spectroscopic characterizations of the secoiridoid derivatives. Journal of Agricultural and Food Chemistry. 1993;41(11):2228–2234. doi: 10.1021/jf00035a076. [CrossRef] [Google Scholar]

114. Brenes M., Hidalgo F. J., García A., et al. Pinoresinol and 1-acetoxypinoresinol, two new phenolic compounds identified in olive oil. Journal of the American Oil Chemists' Society. 2000;77(7):715–720. doi: 10.1007/s11746-000-0115-4. [CrossRef] [Google Scholar]

115. Bianco A., Coccioli F., Guiso M., Marra C. The occurrence in olive oil of a new class of phenolic compounds: hydroxy-isochromans. Food Chemistry. 2002;77(4):405–411. doi: 10.1016/S0308-8146(01)00366-1. [CrossRef] [Google Scholar]

116. Pérez-Bonilla M., Salido S., van Beek T. A., et al. Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC-DAD-radical scavenging detection. Food Chemistry. 2011;124(1):36–41. doi: 10.1016/j.foodchem.2010.05.099. [CrossRef] [Google Scholar]

117. Khlif I., Hamden K., Damak M., Allouche N. A new triterpene from Olea europea stem with antidiabetic activity. Chemistry of Natural Compounds. 2012;48(5):799–802. doi: 10.1007/s10600-012-0386-y. [CrossRef] [Google Scholar]

118. Al-Khalil S. A survey of plants used in Jordanian traditional medicine. Pharmaceutical Biology. 1995;33(4):317–323. doi: 10.3109/13880209509065385. [CrossRef] [Google Scholar]

119. Bellakhdar J., Claisse R., Fleurentin J., Younos C. Repertory of standard herbal drugs in the Moroccan pharmacopoea. Journal of Ethnopharmacology. 1991;35(2):123–143. doi: 10.1016/0378-8741(91)90064-K. [PubMed] [CrossRef] [Google Scholar]

120. Zargari A. Iranian medicinal plants. Tehran University Publications. 1997;3:p. 392. [Google Scholar]

121. Darias V., Abdala S., Martin D., Ramos F. Hypoglycaemic plants from the Canary Islands. Phytotherapy Research. 1996;10(1):S3–S5. doi: 10.1002/(sici)1099-1573(199602)10:1x003C;5::aid-ptr758x0003e;3.0.co;2-w. [CrossRef] [Google Scholar]

122. Darias V., Bravo L., Barquin E., Herrera D. M., Fraile C. Contribution to the ethnopharmacological study of the Canary Islands. Journal of Ethnopharmacology. 1986;15(2):169–193. doi: 10.1016/0378-8741(86)90154-6. [PubMed] [CrossRef] [Google Scholar]

123. Kokwaro J. O. Medicinal Plants of East Africa. University of Nairobi Press; 2009. [Google Scholar]

124. Lawrendiadis G. Contribution to the knowledge of the medicinal plants of Greece. Planta Medica. 1961;9(2):164–169. doi: 10.1055/s-0028-1100338. [CrossRef] [Google Scholar]

125. De Feo V., Aquino R., Menghini A., Ramundo E., Senatore F. Traditional phytotherapy in the Peninsula Sorrentina, Campania, southern Italy. Journal of Ethnopharmacology. 1992;36(2):113–125. doi: 10.1016/0378-8741(92)90010-O. [PubMed] [CrossRef] [Google Scholar]

126. Pieroni A., Heimler D., Pieters L., van Poel B., Vlietinck A. J. In vitro anti-complementary activity of flavonoids from olive (Olea europaea L.) leaves. Pharmazie. 1996;51(10):765–768. [PubMed] [Google Scholar]

127. Gastaldo P. Official compendium of the Italian flora. XVI. Fitoterapia. 1974;45:199–217. [Google Scholar]

128. de Feo V., Senatore F. Medicinal plants and phytotherapy in the Amalfitan Coast, Salerno Province, Campania, Southern Italy. Journal of Ethnopharmacology. 1993;39(1):39–51. doi: 10.1016/0378-8741(93)90049-b. [PubMed] [CrossRef] [Google Scholar]

129. Giordano J., Levine P. Botanical preparations used in Italian folk medicine: possible pharmacological and chemical basis of effect. Social Pharmacology. 1989;3(1-2):83–110. [Google Scholar]

130. Vardanian S. A. Phytotherapy of bronchial asthma in medieval Armenian medicine. Terapevticheskiĭ Arkhiv. 1978;50(4):133–136. [PubMed] [Google Scholar]

131. Ribeiro de R. A., de Barros F., Margarida M., et al. Acute diuretic effects in conscious rats produced by some medicinal plants used in the state of Sao Paulo, Brasil. Journal of Ethnopharmacology. 1988;24(1):19–29. doi: 10.1016/0378-8741(88)90136-5. [PubMed] [CrossRef] [Google Scholar]

132. Ghazanfar S. A., Al-Al-Sabahi A. M. Medicinal plants of Northern and Central Oman (Arabia) Economic Botany. 1993;47(1):89–98. doi: 10.1007/bf02862209. [CrossRef] [Google Scholar]

133. Fujita T., Sezik E., Tabata M., et al. Traditional medicine in Turkey VII. Folk medicine in middle and west Black Sea regions. Economic Botany. 1995;49(4):406–422. doi: 10.1007/BF02863092. [CrossRef] [Google Scholar]

134. Flemmig J., Kuchta K., Arnhold J., Rauwald H. W. Olea europaea leaf (Ph.Eur.) extract as well as several of its isolated phenolics inhibit the gout-related enzyme xanthine oxidase. Phytomedicine. 2011;18(7):561–566. doi: 10.1016/j.phymed.2010.10.021. [PubMed] [CrossRef] [Google Scholar]

135. Haloui E., Marzouk Z., Marzouk B., Bouftira I., Bouraoui A., Fenina N. Pharmacological activities and chemical composition of the Olea europaea L. leaf essential oils from Tunisia. Journal of Food, Agriculture and Environment. 2010;8(2):204–208. [Google Scholar]

136. Süntar I. P., Akkol E. K., Baykal T. Assessment of anti-inflammatory and antinociceptive activities of Olea europaea L. Journal of Medicinal Food. 2010;13(2):352–356. doi: 10.1089/jmf.2009.0067. [PubMed] [CrossRef] [Google Scholar]

137. Guerin J., Reveillere H. Annales Pharmaceutiques Françaises. Paris, France: Masson Editeur; 1985. Antifungal activity of plant extracts used in therapy. 2. Study of 40 plant extracts against 9 fungi species; pp. 77–81. [Google Scholar]

138. Tahraoui A., El-Hilaly J., Israili Z. H., Lyoussi B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province) Journal of Ethnopharmacology. 2007;110(1):105–117. doi: 10.1016/j.jep.2006.09.011. [PubMed] [CrossRef] [Google Scholar]

139. Sheth A., Mitaliya K., Joshi S. The Herbs of Ayurveda. Shet; 2005. [Google Scholar]

140. Ali-Shtayeh M. S., Jamous R. M., Jamous R. M. Complementary and alternative medicine use amongst Palestinian diabetic patients. Complementary Therapies in Clinical Practice. 2012;18(1):16–21. doi: 10.1016/j.ctcp.2011.09.001. [PubMed] [CrossRef] [Google Scholar]

141. Alarcon-Aguilara F. J., Roman-Ramos R., Perez-Gutierrez S., Aguilar-Contreras A., Contreras-Weber C. C., Flores-Saenz J. L. Study of the anti-hyperglycemic effect of plants used as antidiabetics. Journal of Ethnopharmacology. 1998;61(2):101–110. doi: 10.1016/S0378-8741(98)00020-8. [PubMed] [CrossRef] [Google Scholar]

142. Amel B. Traditional treatment of high blood pressure and diabetes in Souk Ahras district. Journal of Pharmacognosy and Phytotherapy. 2013;5(1):12–20. doi: 10.5897/jpp11.065. [CrossRef] [Google Scholar]

143. Al-Azzawie H. F., Alhamdani M.-S. S. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sciences. 2006;78(12):1371–1377. doi: 10.1016/j.lfs.2005.07.029. [PubMed] [CrossRef] [Google Scholar]

144. Sato H., Genet C., Strehle A., et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochemical and Biophysical Research Communications. 2007;362(4):793–798. doi: 10.1016/j.bbrc.2007.06.130. [PubMed] [CrossRef] [Google Scholar]

145. Jemai H., Feki A. E. L., Sayadi S. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. Journal of Agricultural and Food Chemistry. 2009;57(19):8798–8804. doi: 10.1021/jf901280r. [PubMed] [CrossRef] [Google Scholar]

146. Eidi A., Eidi M., Darzi R. Antidiabetic effect of Olea europaea L. in normal and diabetic rats. Phytotherapy Research. 2009;23(3):347–350. doi: 10.1002/ptr.2629. [PubMed] [CrossRef] [Google Scholar]

147. Cumaoğlu A., Rackova L., Stefek M., Kartal M., Maechler P., Karasu Ç. Effects of olive leaf polyphenols against H2O2 toxicity in insulin secreting _β_-cells. Acta Biochimica Polonica. 2011;58(1):45–50. [PubMed] [Google Scholar]

148. Barbaro B., Toietta G., Maggio R., et al. Effects of the olive-derived polyphenol oleuropein on human health. International Journal of Molecular Sciences. 2014;15(10):18508–18524. doi: 10.3390/ijms151018508. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Dubey V. K., Patil C. R., Kamble S. M., et al. Oleanolic acid prevents progression of streptozotocin induced diabetic nephropathy and protects renal microstructures in Sprague Dawley rats. Journal of Pharmacology & Pharmacotherapeutics. 2013;4(1):47–52. doi: 10.4103/0976-500x.107678. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Al-Qarawi A. A., Al-Damegh M. A., ElMougy S. A. Effect of freeze dried extract of Olea europaea on the pituitary-thyroid axis in rats. Phytotherapy Research. 2002;16(3):286–287. doi: 10.1002/ptr.855. [PubMed] [CrossRef] [Google Scholar]

151. de Bock M., Derraik J. G. B., Brennan C. M., et al. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PLoS ONE. 2013;8(3) doi: 10.1371/journal.pone.0057622.e57622 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Casaburi I., Puoci F., Chimento A., et al. Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: a review of in vitro studies. Molecular Nutrition & Food Research. 2013;57(1):71–83. doi: 10.1002/mnfr.201200503. [PubMed] [CrossRef] [Google Scholar]

153. Juan M. E., Wenzel U., Daniel H., Planas J. M. Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells. Molecular Nutrition and Food Research. 2008;52(5):595–599. doi: 10.1002/mnfr.200700300. [PubMed] [CrossRef] [Google Scholar]

154. Goulas V., Exarchou V., Troganis A. N., et al. Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Molecular Nutrition and Food Research. 2009;53(5):600–608. doi: 10.1002/mnfr.200800204. [PubMed] [CrossRef] [Google Scholar]

155. Allouche Y., Warleta F., Campos M., et al. Antioxidant, antiproliferative, and pro-apoptotic capacities of pentacyclic triterpenes found in the skin of olives on MCF-7 human breast cancer cells and their effects on DNA damage. Journal of Agricultural and Food Chemistry. 2011;59(1):121–130. doi: 10.1021/jf102319y. [PubMed] [CrossRef] [Google Scholar]

156. Fares R., Bazzi S., Baydoun S. E., Abdel-Massih R. M. The antioxidant and anti-proliferative activity of the Lebanese Olea europaea extract. Plant Foods for Human Nutrition. 2011;66(1):58–63. doi: 10.1007/s11130-011-0213-9. [PubMed] [CrossRef] [Google Scholar]

157. Wang X., Bai H., Zhang X., et al. Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis. 2013;34(6):1323–1330. doi: 10.1093/carcin/bgt058. [PubMed] [CrossRef] [Google Scholar]

158. Burattini S., Salucci S., Baldassarri V., et al. Anti-apoptotic activity of hydroxytyrosol and hydroxytyrosyl laurate. Food and Chemical Toxicology. 2013;55:248–256. doi: 10.1016/j.fct.2012.12.049. [PubMed] [CrossRef] [Google Scholar]

159. Milanizadeh S., Bigdeli M. R., Rasoulian B., Amani D. The effects of olive leaf extract on antioxidant enzymes activity and tumor growth in breast cancer. Thrita. 2014;3(1) doi: 10.5812/thrita.12914.e12914 [CrossRef] [Google Scholar]

160. Reyes-Zurita F. J., Rufino-Palomares E. E., Lupiáñez J. A., Cascante M. Maslinic acid, a natural triterpene from Olea europaea L., induces apoptosis in HT29 human colon-cancer cells via the mitochondrial apoptotic pathway. Cancer Letters. 2009;273(1):44–54. doi: 10.1016/j.canlet.2008.07.033. [PubMed] [CrossRef] [Google Scholar]

161. Rufino-Palomares E. E., Reyes-Zurita F. J., García-Salguero L., et al. Maslinic acid, a triterpenic anti-tumoural agent, interferes with cytoskeleton protein expression in HT29 human colon-cancer cells. Journal of Proteomics. 2013;83:15–25. doi: 10.1016/j.jprot.2013.02.031. [PubMed] [CrossRef] [Google Scholar]

162. Reyes F. J., Centelles J. J., Lupiáñez J. A., Cascante M. (2_α_,3_β_)-2,3-Dihydroxyolean-12-en-28-oic acid, a new natural triterpene from Olea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cells. FEBS Letters. 2006;580(27):6302–6310. doi: 10.1016/j.febslet.2006.10.038. [PubMed] [CrossRef] [Google Scholar]

163. Cárdeno A., Sánchez-Hidalgo M., Rosillo M. A., de la Lastra C. A. Oleuropein, a secoiridoid derived from olive tree, inhibits the proliferation of human colorectal cancer cell through downregulation of HIF-1_α_. Nutrition and Cancer. 2013;65(1):147–156. doi: 10.1080/01635581.2013.741758. [PubMed] [CrossRef] [Google Scholar]

164. Randon A. M., Attard E. The in vitro immunomodulatory activity of oleuropein, a secoiridoid glycoside from Olea europaea L. Natural Product Communications. 2007;2(5):515–519. [Google Scholar]

165. Adnan M., Bibi R., Mussarat S., Tariq A., Shinwari Z. K. Ethnomedicinal and phytochemical review of Pakistani medicinal plants used as antibacterial agents against Escherichia coli. Annals of Clinical Microbiology and Antimicrobials. 2014;13(1, article 40) doi: 10.1186/s12941-014-0040-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Kubo A., Lunde C. S., Kubo I. Antimicrobial activity of the olive oil flavor compounds. Journal of Agricultural and Food Chemistry. 1995;43(6):1629–1633. doi: 10.1021/jf00054a040. [CrossRef] [Google Scholar]

167. Pereira A. P., Ferreira I. C. F. R., Marcelino F., et al. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules. 2007;12(5):1153–1162. doi: 10.3390/12051153. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Medina E., Brenes M., Romero C., García A., de Castro A. Main antimicrobial compounds in table olives. Journal of Agricultural and Food Chemistry. 2007;55(24):9817–9823. doi: 10.1021/jf0719757. [PubMed] [CrossRef] [Google Scholar]

169. Alkofahi A., Batshoun R., Owais W., Najib N. Biological activity of some Jordanian medicinal plant extracts. Part II. Fitoterapia. 1997;68(2):163–168. [Google Scholar]

170. Sudjana A. N., D'Orazio C., Ryan V., et al. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. International Journal of Antimicrobial Agents. 2009;33(5):461–463. doi: 10.1016/j.ijantimicag.2008.10.026. [PubMed] [CrossRef] [Google Scholar]

171. Ko K.-W., Kang H. J., Lee B. Y. Antioxidant, antimicrobial, and antiproliferative activities of olive (Olea europaea L.) Leaf Extracts. Food Science and Biotechnology. 2009;18(3):818–821. [Google Scholar]

172. Korukluoglu M., Sahan Y., Yigit A., Ozer E. T., Gucer S. Antibacterial activity and chemical constitutions of Olea europaea L. leaf extracts. Journal of Food Processing and Preservation. 2010;34(3):383–396. doi: 10.1111/j.1745-4549.2008.00318.x. [CrossRef] [Google Scholar]

173. Lee O.-H., Lee B.-Y. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract. Bioresource Technology. 2010;101(10):3751–3754. doi: 10.1016/j.biortech.2009.12.052. [PubMed] [CrossRef] [Google Scholar]

174. Keskin D., Ceyhan N., Uğur A., Dbeys A. D. Antimicrobial activity and chemical constitutions of West Anatolian olive (Olea europaea L.) leaves. Journal of Food, Agriculture & Environment. 2012;10(2):99–102. [Google Scholar]

175. Brahmi F., Flamini G., Issaoui M., et al. Chemical composition and biological activities of volatile fractions from three Tunisian cultivars of olive leaves. Medicinal Chemistry Research. 2012;21(10):2863–2872. doi: 10.1007/s00044-011-9817-8. [CrossRef] [Google Scholar]

176. Zaki A. A., Shaaban M. I., Hashish N. E., Amer M. A., Lahloub M.-F. Assessment of anti-quorum sensing activity for some ornamental and medicinal plants native to Egypt. Scientia Pharmaceutica. 2013;81(1):251–258. doi: 10.3797/scipharm.1204-26. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Medina E., Romero C., de Los Santos B., et al. Antimicrobial activity of olive solutions from stored alpeorujo against plant pathogenic microorganisms. Journal of Agricultural and Food Chemistry. 2011;59(13):6927–6932. doi: 10.1021/jf2010386. [PubMed] [CrossRef] [Google Scholar]

178. Brenes M., García A., de los Santos B., et al. Olive glutaraldehyde-like compounds against plant pathogenic bacteria and fungi. Food Chemistry. 2011;125(4):1262–1266. doi: 10.1016/j.foodchem.2010.10.055. [CrossRef] [Google Scholar]

179. Korukluoglu M., Sahan Y., Yigit A. Antifungal properties of olive leaf extracts and their phenolic compounds. Journal of Food Safety. 2008;28(1):76–87. doi: 10.1111/j.1745-4565.2007.00096.x. [CrossRef] [Google Scholar]

180. Battinelli L., Daniele C., Cristiani M., Bisignano G., Saija A., Mazzanti G. In vitro antifungal and anti-elastase activity of some aliphatic aldehydes from Olea europaea L. fruit. Phytomedicine. 2006;13(8):558–563. doi: 10.1016/j.phymed.2005.09.009. [PubMed] [CrossRef] [Google Scholar]

181. Brahmi F., Dabbou S., Flamini G., Edziri H., Mastouri M., Hammami M. Fatty acid composition and biological activities of volatiles from fruits of two Tunisian olive cultivars. International Journal of Food Science & Technology. 2011;46(6):1316–1322. doi: 10.1111/j.1365-2621.2011.02616.x. [CrossRef] [Google Scholar]

182. de Pablos L. M., González G., Rodrigues R., Granados A. G., Parra A., Osuna A. Action of a pentacyclic triterpenoid, maslinic acid, against Toxoplasma gondii. Journal of Natural Products. 2010;73(5):831–834. doi: 10.1021/np900749b. [PubMed] [CrossRef] [Google Scholar]

183. Micol V., Caturla N., Pérez-Fons L., Más V., Pérez L., Estepa A. The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV) Antiviral Research. 2005;66(2-3):129–136. doi: 10.1016/j.antiviral.2005.02.005. [PubMed] [CrossRef] [Google Scholar]

184. Nasopoulou C., Karantonis H. C., Detopoulou M., Demopoulos C. A., Zabetakis I. Exploiting the anti-inflammatory properties of olive (Olea europaea) in the sustainable production of functional food and neutraceuticals. Phytochemistry Reviews. 2014;13:445–458. doi: 10.1007/s11101-014-9350-8. [CrossRef] [Google Scholar]

185. Le Tutour B., Guedon D. Antioxidative activities of Olea europaea leaves and related phenolic compounds. Phytochemistry. 1992;31(4):1173–1178. doi: 10.1016/0031-9422(92)80255-d. [CrossRef] [Google Scholar]

186. Speroni E., Guerra M. C., Minghetti A., et al. Oleuropein evaluated in vitro and in vivo as an antioxidant. Phytotherapy Research. 1998;12:S98–S100. doi: 10.1002/(sici)1099-1573(1998)12:1x0003C;s98::aid-ptr263x003E;3.0.co;2-m. [CrossRef] [Google Scholar]

187. Fogliano V., Ritieni A., Monti S. M., et al. Antioxidant activity of virgin olive oil phenolic compounds in a micellar system. Journal of the Science of Food and Agriculture. 1999;79(13):1803–1808. [Google Scholar]

188. Benavente-García O., Castillo J., Lorente J., Ortuño A., Del Rio J. A. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry. 2000;68(4):457–462. doi: 10.1016/s0308-8146(99)00221-6. [CrossRef] [Google Scholar]

189. Briante R., Patumi M., Terenziani S., Bismuto E., Febbraio F., Nucci R. Olea europaea L. leaf extract and derivatives: antioxidant properties. Journal of Agricultural and Food Chemistry. 2002;50(17):4934–4940. doi: 10.1021/jf025540p. [PubMed] [CrossRef] [Google Scholar]

190. Lavelli V. Comparison of the antioxidant activities of extra virgin olive oils. Journal of Agricultural and Food Chemistry. 2002;50(26):7704–7708. doi: 10.1021/jf020749o. [PubMed] [CrossRef] [Google Scholar]

191. Morelló J.-R., Vuorela S., Romero M.-P., Motilva M.-J., Heinonen M. Antioxidant activity of olive pulp and olive oil phenolic compounds of the arbequina cultivar. Journal of Agricultural and Food Chemistry. 2005;53(6):2002–2008. doi: 10.1021/jf048386a. [PubMed] [CrossRef] [Google Scholar]

192. Ranalli A., Lucera L., Contento S. Antioxidizing potency of phenol compounds in olive oil mill wastewater. Journal of Agricultural and Food Chemistry. 2003;51(26):7636–7641. doi: 10.1021/jf034879o. [PubMed] [CrossRef] [Google Scholar]

193. Montilla M. P., Agil A., Navarro M. C., et al. Antioxidant activity of maslinic acid, a triterpene derivative obtained from Olea europaea. Planta Medica. 2003;69(5):472–474. doi: 10.1055/s-2003-39698. [PubMed] [CrossRef] [Google Scholar]

194. Sivakumar G., Briccoli Bati C., Uccella N. HPLC-MS screening of the antioxidant profile of Italian olive cultivars. Chemistry of Natural Compounds. 2005;41(5):588–591. doi: 10.1007/s10600-005-0214-8. [CrossRef] [Google Scholar]

195. Škerget M., Kotnik P., Hadolin M., Hraš A. R., Simonič M., Knez Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry. 2005;89(2):191–198. doi: 10.1016/j.foodchem.2004.02.025. [CrossRef] [Google Scholar]

196. Gonçalves S., Gomes D., Costa P., Romano A. The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Industrial Crops and Products. 2013;43(1):465–471. doi: 10.1016/j.indcrop.2012.07.066. [CrossRef] [Google Scholar]

197. Lafka T.-I., Lazou A., Sinanoglou V., Lazos E. Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods. 2013;2(1):18–31. [PMC free article] [PubMed] [Google Scholar]

198. Marwah R. G., Fatope M. O., Mahrooqi R. A., Varma G. B., Abadi H. A., Al-Burtamani S. K. S. Antioxidant capacity of some edible and wound healing plants in Oman. Food Chemistry. 2007;101(2):465–470. doi: 10.1016/j.foodchem.2006.02.001. [CrossRef] [Google Scholar]

199. Jiang L.-Q., Takamura H. Radical-scavenging compounds in olive fruits and their changes during table olive preparation. Applied Mechanics and Materials. 2013;295-298:118–122. doi: 10.4028/www.scientific.net/AMM.295-298.118. [CrossRef] [Google Scholar]

200. Hayes J. E., Allen P., Brunton N., O'Grady M. N., Kerry J. P. Phenolic composition and in vitro antioxidant capacity of four commercial phytochemical products: olive leaf extract (Olea europaea L.), lutein, sesamol and ellagic acid. Food Chemistry. 2011;126(3):948–955. doi: 10.1016/j.foodchem.2010.11.092. [CrossRef] [Google Scholar]

201. Jemai H., Bouaziz M., Sayadi S. Phenolic composition, sugar contents and antioxidant activity of tunisian sweet olive cuitivar with regard to fruit ripening. Journal of Agricultural and Food Chemistry. 2009;57(7):2961–2968. doi: 10.1021/jf8034176. [PubMed] [CrossRef] [Google Scholar]

202. Silva S., Gomes L., Leitão F., Coelho A. V., Boas L. V. Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Science and Technology International. 2006;12(5):385–395. doi: 10.1177/1082013206070166. [CrossRef] [Google Scholar]

203. Lee O.-H., Lee B.-Y., Kim Y.-C., Shetty K., Kim Y.-C. Radical scavenging-linked antioxidant activity of ethanolic extracts of diverse types of extra virgin olive oils. Journal of Food Science. 2008;73(7):C519–C525. doi: 10.1111/j.1750-3841.2008.00865.x. [PubMed] [CrossRef] [Google Scholar]

204. Ben Othman N., Roblain D., Thonart P., Hamdi M. Tunisian table olive phenolic compounds and their antioxidant capacity. Journal of Food Science. 2008;73(4):C235–C240. doi: 10.1111/j.1750-3841.2008.00711.x. [PubMed] [CrossRef] [Google Scholar]

205. Conde E., Cara C., Moure A., Ruiz E., Castro E., Domínguez H. Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning. Food Chemistry. 2009;114(3):806–812. doi: 10.1016/j.foodchem.2008.10.017. [CrossRef] [Google Scholar]

206. Ferreira I. C. F. R., Barros L., Soares M. E., Bastos M. L., Pereira J. A. Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chemistry. 2007;103(1):188–195. doi: 10.1016/j.foodchem.2006.08.006. [CrossRef] [Google Scholar]

207. Paiva-Martins F., Fernandes J., Rocha S., et al. Effects of olive oil polyphenols on erythrocyte oxidative damage. Molecular Nutrition & Food Research. 2009;53(5):609–616. doi: 10.1002/mnfr.200800276. [PubMed] [CrossRef] [Google Scholar]

208. Abaza L., ben Youssef N., Manai H., Haddada F. M., Methenni K., Zarrouk M. Chétoui olive leaf extracts: influence of the solvent type on phenolics and antioxidant activities. Grasas y Aceites. 2011;62(1):96–104. doi: 10.3989/gya.044710. [CrossRef] [Google Scholar]

209. Türkez H., Toğar B. Olive (Olea europaea L.) leaf extract counteracts genotoxicity and oxidative stress of permethrin in human lymphocytes. Journal of Toxicological Sciences. 2011;36(5):531–537. doi: 10.2131/jts.36.531. [PubMed] [CrossRef] [Google Scholar]

210. Muzzalupo I., Stefanizzi F., Perri E., Chiappetta A. A. Transcript levels of CHL p gene, antioxidants and chlorophylls contents in olive (Olea europaea l.) pericarps: a comparative study on eleven olive cultivars harvested in two ripening stages. Plant Foods for Human Nutrition. 2011;66(1):1–10. doi: 10.1007/s11130-011-0208-6. [PubMed] [CrossRef] [Google Scholar]

211. Nadour M., Michaud P., Moulti-Mati F. Antioxidant activities of polyphenols extracted from olive (Olea europaea) of Chamlal variety. Applied Biochemistry and Biotechnology. 2012;167(6):1802–1810. doi: 10.1007/s12010-012-9633-8. [PubMed] [CrossRef] [Google Scholar]

212. Petridis A., Therios I., Samouris G. Genotypic variation of total phenol and Oleuropein concentration and antioxidant activity of 11 Greek olive cultivars (Olea europaea L.) HortScience. 2012;47(3):339–342. [Google Scholar]

213. Malheiro R., Rodrigues N., Manzke G., Bento A., Pereira J. A., Casal S. The use of olive leaves and tea extracts as effective antioxidants against the oxidation of soybean oil under microwave heating. Industrial Crops and Products. 2013;44:37–43. doi: 10.1016/j.indcrop.2012.10.023. [CrossRef] [Google Scholar]

214. Machado M., Felizardo C., Fernandes-Silva A. A., Nunes F. M., Barros A. Polyphenolic compounds, antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive cv. ‘Cobrançosa’ under different irrigation regimes. Food Research International. 2013;51(1):412–421. doi: 10.1016/j.foodres.2012.12.056. [CrossRef] [Google Scholar]

215. Botsoglou E., Govaris A., Pexara A., Ambrosiadis I., Fletouris D. Effect of dietary olive leaves (Olea europaea L.) on lipid and protein oxidation of refrigerated stored n-3-enriched pork. International Journal of Food Science & Technology. 2014;49(1):42–50. doi: 10.1111/ijfs.12272. [CrossRef] [Google Scholar]

216. Togna G. I., Togna A. R., Franconi M., Marra C., Guiso M. Olive oil isochromans inhibit human platelet reactivity. Journal of Nutrition. 2003;133(8):2532–2536. [PubMed] [Google Scholar]

217. Homer K. A., Manji F., Beighton D. Inhibition of peptidase and glycosidase activities of Porphyromonas gingivalis, Bacteroides intermedius and Treponema denticola by plant extracts. Journal of Clinical Periodontology. 1992;19(5):305–310. doi: 10.1111/j.1600-051x.1992.tb00649.x. [PubMed] [CrossRef] [Google Scholar]

218. Kubo I., Kinst-Hori I. Tyrosinase inhibitory activity of the olive oil flavor compounds. Journal of Agricultural and Food Chemistry. 1999;47(11):4574–4578. doi: 10.1021/jf990165v. [PubMed] [CrossRef] [Google Scholar]

219. Somova L. I., Shode F. O., Mipando M. Cardiotonic and antidysrhythmic effects of oleanolic and ursolic acids, methyl maslinate and uvaol. Phytomedicine. 2004;11(2-3):121–129. doi: 10.1078/0944-7113-00329. [PubMed] [CrossRef] [Google Scholar]

220. Susalit E., Agus N., Effendi I., et al. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril. Phytomedicine. 2011;18(4):251–258. doi: 10.1016/j.phymed.2010.08.016. [PubMed] [CrossRef] [Google Scholar]

221. Circosta C., Occhiuto F., Gregorio A., Toigo S., de Pasquale A. The cardiovascular activity of the shoots and leaves of Olea europaea L. and oleuropein. Plantes Medicinales et Phytotherapie. 1990;24(4):264–277. [Google Scholar]

222. Luibl E. Leaves of the olive tree in hypertension. Medizinische Monatsschrift für Pharmazeuten. 1958;12:181–182. [PubMed] [Google Scholar]

223. Kosak R., Stern P. Examination of the hypotensive activity of folium olivae. Acta Pharmaceutica Jugoslavia. 1956;6:121–132. [Google Scholar]

224. Somova L. I., Shode F. O., Ramnanan P., Nadar A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. Journal of Ethnopharmacology. 2003;84(2-3):299–305. doi: 10.1016/s0378-8741(02)00332-x. [PubMed] [CrossRef] [Google Scholar]

225. Cherif S., Rahal N., Haouala M., et al. A clinical trial of a titrated Olea extract in the treatment of essential arterial hypertension. Journal de Pharmacie de Belgique. 1996;51(2):69–71. [PubMed] [Google Scholar]

226. Khayyal M. T., El-Ghazaly M. A., Abdallah D. M., Nassar N. N., Okpanyi S. N., Kreuter M.-H. Blood pressure lowering effect of an olive leaf extract (Olea europaea) in L-NAME induced hypertension in rats. Arzneimittel-Forschung. 2002;52(11):797–802. [PubMed] [Google Scholar]

227. Perrinjaquet-Moccetti T., Busjahn A., Schmidlin C., Schmidt A., Bradl B., Aydogan C. Food supplementation with an olive (Olea europaea L.) leaf extract reduces blood pressure in borderline hypertensive monozygotic twins. Phytotherapy Research. 2008;22(9):1239–1242. doi: 10.1002/ptr.2455. [PubMed] [CrossRef] [Google Scholar]

228. Scheffler A., Rauwald H. W., Kampa B., Mann U., Mohr F. W., Dhein S. Olea europaea leaf extract exerts L-type Ca2+ channel antagonistic effects. Journal of Ethnopharmacology. 2008;120(2):233–240. doi: 10.1016/j.jep.2008.08.018. [PubMed] [CrossRef] [Google Scholar]

229. Beauchamp G. K., Keast R. S. J., Morel D., et al. Ibuprofen-like activity in extra-virgin olive oil. Nature. 2005;437(7055):45–46. doi: 10.1038/437045a. [PubMed] [CrossRef] [Google Scholar]

230. Esmaeili-Mahani S., Rezaeezadeh-Roukerd M., Esmaeilpour K., et al. Olive (Olea europaea L.) leaf extract elicits antinociceptive activity, potentiates morphine analgesia and suppresses morphine hyperalgesia in rats. Journal of Ethnopharmacology. 2010;132(1):200–205. doi: 10.1016/j.jep.2010.08.013. [PubMed] [CrossRef] [Google Scholar]

231. Eidi A., Moghadam-Kia S., Moghadam J. Z., Eidi M., Rezazadeh S. Antinociceptive and anti-inflammatory effects of olive oil (Olea europeae L.) in mice. Pharmaceutical Biology. 2012;50(3):332–337. doi: 10.3109/13880209.2011.600318. [PubMed] [CrossRef] [Google Scholar]

232. Nieto F. R., Cobos E. J., Entrena J. M., Parra A., García-Granados A., Baeyens J. M. Antiallodynic and analgesic effects of maslinic acid, a pentacyclic triterpenoid from Olea europaea. Journal of Natural Products. 2013;76(4):737–740. doi: 10.1021/np300783a. [PubMed] [CrossRef] [Google Scholar]

233. Ikeda Y., Murakami A., Ohigashi H. Ursolic acid: an anti- and pro-inflammatory triterpenoid. Molecular Nutrition and Food Research. 2008;52(1):26–42. doi: 10.1002/mnfr.200700389. [PubMed] [CrossRef] [Google Scholar]

234. Sahranavard S., Kamalinejad M., Faizi M. Evaluation of anti-inflammatory and anti-nociceptive effects of defatted fruit extract of Olea europaea. Iranian Journal of Pharmaceutical Research. 2014;13(supplement):119–123. [PMC free article] [PubMed] [Google Scholar]

235. Dekanski D., Janićijević-Hudomal S., Tadić V., Marković G., Arsić I., Mitrović D. M. Phytochemical analysis and gastroprotective activity of an olive leaf extract. Journal of the Serbian Chemical Society. 2009;74(4):367–377. doi: 10.2298/jsc0904367d. [CrossRef] [Google Scholar]

236. Arsić I., Žugić A., Antić D. R., et al. Hypericum perforatum L. Hypericaceae/Guttiferae sunflower, olive and palm oil extracts attenuate cold restraint stress—induced gastric lesions. Molecules. 2010;15(10):6688–6698. doi: 10.3390/molecules15106688. [CrossRef] [Google Scholar]

237. Fehri B., Aiache J.-M., Mrad S., Korbi S., Lamaison J.-L. Olea europaea L.: stimulant, anti-ulcer and anti-inflammatory effects. Bollettino Chimico Farmaceutico. 1996;135(1):42–49. [Google Scholar]

238. Kang H., Koppula S. Olea europaea linn. Fruit pulp extract protects against carbon tetrachloride-induced hepatic damage in mice. Indian Journal of Pharmaceutical Sciences. 2014;76(4):274–280. [PMC free article] [PubMed] [Google Scholar]

239. Iriti M., Vitalini S., Fico G., Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules. 2010;15(5):3517–3555. doi: 10.3390/molecules15053517. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

240. Trichopoulou A., Lagiou P., Kuper H., Trichopoulos D. Cancer and Mediterranean dietary traditions. Cancer Epidemiology Biomarkers and Prevention. 2000;9(9):869–873. [PubMed] [Google Scholar]

241. Vecchia C., Bosetti C. Diet and cancer risk in Mediterranean countries. Hungarian Medical Journal. 2007;1(1):13–23. doi: 10.1556/hmj.1.2007.1.3. [CrossRef] [Google Scholar]

242. Guan T., Qian Y.-S., Huang M.-H., et al. Neuroprotection of maslinic acid, a novel glycogen phosphorylase inhibitor, in type 2 diabetic rats. Chinese Journal of Natural Medicines. 2010;8(4):293–297. doi: 10.3724/SP.J.1009.2010.00293. [CrossRef] [Google Scholar]

243. Qian Y., Guan T., Tang X., et al. Astrocytic glutamate transporter-dependent neuroprotection against glutamate toxicity: an in vitro study of maslinic acid. European Journal of Pharmacology. 2011;651(1–3):59–65. doi: 10.1016/j.ejphar.2010.10.095. [PubMed] [CrossRef] [Google Scholar]

244. Qian Y., Guan T., Tang X., et al. Maslinic acid, a natural triterpenoid compound from Olea europaea, protects cortical neurons against oxygen-glucose deprivation-induced injury. European Journal of Pharmacology. 2011;670(1):148–153. doi: 10.1016/j.ejphar.2011.07.037. [PubMed] [CrossRef] [Google Scholar]

245. Kaeidi A., Esmaeili-Mahani S., Sheibani V., et al. Olive (Olea europaea L.) leaf extract attenuates early diabetic neuropathic pain through prevention of high glucose-induced apoptosis: in vitro and in vivo studies. Journal of Ethnopharmacology. 2011;136(1):188–196. doi: 10.1016/j.jep.2011.04.038. [PubMed] [CrossRef] [Google Scholar]

246. Mohagheghi F., Bigdeli M. R., Rasoulian B., Hashemi P., Pour M. R. The neuroprotective effect of olive leaf extract is related to improved blood-brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia. Phytomedicine. 2011;18(2-3):170–175. doi: 10.1016/j.phymed.2010.06.007. [PubMed] [CrossRef] [Google Scholar]

247. Daccache A., Lion C., Sibille N., et al. Oleuropein and derivatives from olives as Tau aggregation inhibitors. Neurochemistry International. 2011;58(6):700–707. doi: 10.1016/j.neuint.2011.02.010. [PubMed] [CrossRef] [Google Scholar]

248. Rabiei Z., Bigdeli M. R., Rasoulian B., Ghassempour A., Mirzajani F. The neuroprotection effect of pretreatment with olive leaf extract on brain lipidomics in rat stroke model. Phytomedicine. 2012;19(10):940–946. doi: 10.1016/j.phymed.2012.06.003. [PubMed] [CrossRef] [Google Scholar]

249. Pasban-Aliabadi H., Esmaeili-Mahani S., Sheibani V., Abbasnejad M., Mehdizadeh A., Yaghoobi M. M. Inhibition of 6-hydroxydopamine-induced PC12 cell apoptosis by olive (Olea europaea L.) leaf extract is performed by its main component oleuropein. Rejuvenation Research. 2013;16(2):134–142. doi: 10.1089/rej.2012.1384. [PubMed] [CrossRef] [Google Scholar]

250. Diomede L., Rigacci S., Romeo M., Stefani M., Salmona M. Oleuropein aglycone protects transgenic C. elegans strains expressing A_β_42 by reducing plaque load and motor deficit. PLoS ONE. 2013;8(3) doi: 10.1371/journal.pone.0058893.e58893 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

251. Al Okbi S. Y., Hassan Z., El Mazar M. M., Ammar N., Abou Elkassem L. T., El Bakry H. F. Diuretic activity of olive (Olea europaea L.) Planta Medica. 2011;77(12):p. 1415. [Google Scholar]

252. Koca U., Süntar I., Akkol E. K., Yilmazer D., Alper M. Wound repair potential of Olea europaea L. leaf extracts revealed by in vivo experimental models and comparative evaluation of the extracts' antioxidant activity. Journal of Medicinal Food. 2011;14(1-2):140–146. doi: 10.1089/jmf.2010.0039. [PubMed] [CrossRef] [Google Scholar]

253. Gholami-Ahangaran M., Bahmani M., Zia-Jahromi N. Comparative and evaluation of anti-leech (Limnatis Nilotica) effect of Olive (Olea Europaea L.) with Levamisol and Tiabendazole. Asian Pacific Journal of Tropical Disease. 2012;2(1):S101–S103. doi: 10.1016/s2222-1808(12)60132-7. [CrossRef] [Google Scholar]

254. Sato A., Shinozaki N., Tamura H. Secoiridoid type of antiallergic substances in olive waste materials of three Japanese varieties of Olea europaea. Journal of Agricultural and Food Chemistry. 2014;62(31):7787–7795. doi: 10.1021/jf502151b. [PubMed] [CrossRef] [Google Scholar]

255. Rabiei Z., Bigdeli M. R., Rasoulian B. Neuroprotection of dietary virgin olive oil on brain lipidomics during stroke. Current Neurovascular Research. 2013;10(3):231–237. doi: 10.2174/15672026113109990007. [PubMed] [CrossRef] [Google Scholar]

256. Omer S. A., Elobeid M. A., Elamin M. H., et al. Toxicity of olive leaves (Olea europaea L.) in Wistar albino rats. Asian Journal of Animal and Veterinary Advances. 2012;7(11):1175–1182. doi: 10.3923/ajava.2012.1175.1182. [CrossRef] [Google Scholar]

257. Sánchez-González M., Lozano-Mena G., Juan M. E., García-Granados A., Planas J. M. Assessment of the safety of maslinic acid, a bioactive compound from Olea europaea L. Molecular Nutrition and Food Research. 2013;57(2):339–346. doi: 10.1002/mnfr.201200481. [PubMed] [CrossRef] [Google Scholar]

258. Ribeiro R. D. A., de Melo M. M. R. F., de Barros F., Gomes C., Trolin G. Acute antihypertensive effect in conscious rats produced by some medicinal plants used in the state of São Paulo. Journal of Ethnopharmacology. 1986;15(3):261–269. doi: 10.1016/0378-8741(86)90164-9. [PubMed] [CrossRef] [Google Scholar]

259. El Amin M., Virk P., Abdel-Rahman M., et al Anti-diabetic effect of Murraya koenigii (L) and Olea europaea (L) leaf extracts on streptozotocin induced diabetic rats. Pakistan Journal of Pharmaceutical Sciences. 2013;26(2):359–365. [PubMed] [Google Scholar]

260. Hashim Y. Z. H.-Y., Worthington J., Allsopp P., et al. Virgin olive oil phenolics extract inhibit invasion of HT115 human colon cancer cells in vitro and in vivo. Food & Function. 2014;5(7):1513–1519. doi: 10.1039/c4fo00090k. [PubMed] [CrossRef] [Google Scholar]

261. Yao J., Wu J., Yang X., Yang J., Zhang Y., Du L. Oleuropein induced apoptosis in HeLa cells via a mitochondrial apoptotic cascade associated with activation of the c-Jun NH2-terminal kinase. Journal of Pharmacological Sciences. 2014;125(3):300–311. doi: 10.1254/jphs.14012fp. [PubMed] [CrossRef] [Google Scholar]

262. Dekanski D., Dacevic M., Ristic S. Olive (Olea europaea L.) leaf extract inhibits lipid peroxidation in experimentally induced gastric mucosal injury. Basic & Clinical Pharmacology & Toxicology. 2009;105:p. 143. [Google Scholar]

263. Pereira J. A., Pereira A. P. G., Ferreira I. C. F. R., et al. Table olives from Portugal: phenolic compounds, antioxidant potential, and antimicrobial activity. Journal of Agricultural and Food Chemistry. 2006;54(22):8425–8431. doi: 10.1021/jf061769j. [PubMed] [CrossRef] [Google Scholar]

264. Fehri B., Mrad S., Aiache J.-M., Lamaison J.-L. Effects of Olea europaea L. extract on the rat isolated ileum and trachea. Phytotherapy Research. 1995;9(6):435–439. doi: 10.1002/ptr.2650090610. [CrossRef] [Google Scholar]