The role of gene conversion in determining sequence variation and divergence in the Est-5 gene family in Drosophila pseudoobscura (original) (raw)

Abstract

Nucleotide sequences of eight Est-5A and Est-5C genes corresponding to previously sequenced Est-5B genes in Drosophila pseudoobscura were determined to compare patterns of polymorphism and divergence among members of this small gene family. The three esterase genes were also sequenced from D. persimilis and D. miranda for interspecific comparisons. The data provide evidence that gene conversion between loci contributes to polymorphism and to the homogenization of the Est5 genes. For Est-5B, which encodes one of the most highly polymorphic proteins in Drosophila, 12% of the segregating amino acid variants appear to have been introduced via gene conversion from other members of the gene family. Interlocus gene conversion can also explain high sequence similarity, especially at synonymous sites, between Est-5B and Est-5A. Tests of neutrality using interspecific comparisons show that levels of polymorphism conform to neutral expectations at each Est-5 locus. However, McDonald-Kreitman tests based on intraspecific gene comparisons indicate that positive selection on amino acids has accompanied Est-5 gene duplication and divergence in D. pseudoobscura.

Full Text

The Full Text of this article is available as a PDF (270.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnason E. An experimental study of neutrality at the malic dehydrogenase and esterase-5 loci in Drosophila pseudoobscura. Hereditas. 1982;96(1):13–27. doi: 10.1111/j.1601-5223.1982.tb00029.x. [DOI] [PubMed] [Google Scholar]
  2. Arnason E. Perturbation-reperturbation test of selection vs. hitchhiking of the two major alleles of Esterase-5 in Drosophila pseudoobscura. Genetics. 1991 Sep;129(1):145–168. doi: 10.1093/genetics/129.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babcock C. S., Anderson W. W. Molecular evolution of the Sex-Ratio inversion complex in Drosophila pseudoobscura: analysis of the Esterase-5 gene region. Mol Biol Evol. 1996 Feb;13(2):297–308. doi: 10.1093/oxfordjournals.molbev.a025589. [DOI] [PubMed] [Google Scholar]
  4. Betrán E., Rozas J., Navarro A., Barbadilla A. The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics. 1997 May;146(1):89–99. doi: 10.1093/genetics/146.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brady J. P., Richmond R. C. An evolutionary model for the duplication and divergence of esterase genes in Drosophila. J Mol Evol. 1992 Jun;34(6):506–521. doi: 10.1007/BF00160464. [DOI] [PubMed] [Google Scholar]
  6. Brady J. P., Richmond R. C. Molecular analysis of evolutionary changes in the expression of Drosophila esterases. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8217–8221. doi: 10.1073/pnas.87.21.8217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brady J. P., Richmond R. C., Oakeshott J. G. Cloning of the esterase-5 locus from Drosophila pseudoobscura and comparison with its homologue in D. melanogaster. Mol Biol Evol. 1990 Nov;7(6):525–546. doi: 10.1093/oxfordjournals.molbev.a040624. [DOI] [PubMed] [Google Scholar]
  8. Coyne J. A., Felton A. A., Lewontin R. C. Extent of genetic variation at a highly polymorphic esterase locus in Drosophila pseudoobscura. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5090–5093. doi: 10.1073/pnas.75.10.5090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goss P. J., Lewontin R. C. Detecting heterogeneity of substitution along DNA and protein sequences. Genetics. 1996 May;143(1):589–602. doi: 10.1093/genetics/143.1.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Healy M. J., Dumancic M. M., Cao A., Oakeshott J. G. Localization of sequences regulating ancestral and acquired sites of esterase6 activity in Drosophila melanogaster. Mol Biol Evol. 1996 Jul;13(6):784–797. doi: 10.1093/oxfordjournals.molbev.a025639. [DOI] [PubMed] [Google Scholar]
  11. Hilliker A. J., Harauz G., Reaume A. G., Gray M., Clark S. H., Chovnick A. Meiotic gene conversion tract length distribution within the rosy locus of Drosophila melanogaster. Genetics. 1994 Aug;137(4):1019–1026. doi: 10.1093/genetics/137.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karotam J., Delves A. C., Oakeshott J. G. Conservation and change in structural and 5' flanking sequences of esterase 6 in sibling Drosophila species. Genetica. 1993;88(1):11–28. doi: 10.1007/BF02424448. [DOI] [PubMed] [Google Scholar]
  14. Keith T. P. Frequency Distribution of Esterase-5 Alleles in Two Populations of DROSOPHILA PSEUDOOBSCURA. Genetics. 1983 Sep;105(1):135–155. doi: 10.1093/genetics/105.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuhner M. K., Lawlor D. A., Ennis P. D., Parham P. Gene conversion in the evolution of the human and chimpanzee MHC class I loci. Tissue Antigens. 1991 Oct;38(4):152–164. doi: 10.1111/j.1399-0039.1991.tb01889.x. [DOI] [PubMed] [Google Scholar]
  16. Lewontin R. C., Hubby J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966 Aug;54(2):595–609. doi: 10.1093/genetics/54.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  18. Moriyama E. N., Powell J. R. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. doi: 10.1093/oxfordjournals.molbev.a025563. [DOI] [PubMed] [Google Scholar]
  19. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  20. Ohta T. Further examples of evolution by gene duplication revealed through DNA sequence comparisons. Genetics. 1994 Dec;138(4):1331–1337. doi: 10.1093/genetics/138.4.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rozas J., Rozas R. DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Comput Appl Biosci. 1995 Dec;11(6):621–625. doi: 10.1093/bioinformatics/11.6.621. [DOI] [PubMed] [Google Scholar]
  22. Russo C. A., Takezaki N., Nei M. Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol. 1995 May;12(3):391–404. doi: 10.1093/oxfordjournals.molbev.a040214. [DOI] [PubMed] [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Veuille M., King L. M. Molecular basis of polymorphism at the esterase-5B locus in Drosophila pseudoobscura. Genetics. 1995 Sep;141(1):255–262. doi: 10.1093/genetics/141.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wines D. R., Brady J. M., Southard E. M., MacDonald R. J. Evolution of the rat kallikrein gene family: gene conversion leads to functional diversity. J Mol Evol. 1991 Jun;32(6):476–492. doi: 10.1007/BF02102650. [DOI] [PubMed] [Google Scholar]
  26. Yamazaki T. Measurement of fitness at the esterase-5 locus in Drosophila pseudoobscura. Genetics. 1971 Apr;67(4):579–603. doi: 10.1093/genetics/67.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yue X. N., Sakaguchi B., Eickbush T. H. Gene conversions can generate sequence variants in the late chorion multigene families of Bombyx mori. Genetics. 1988 Sep;120(1):221–231. doi: 10.1093/genetics/120.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]