tf.math.reduce_max | TensorFlow v2.16.1 (original) (raw)
tf.math.reduce_max
Stay organized with collections Save and categorize content based on your preferences.
Computes tf.math.maximum of elements across dimensions of a tensor.
View aliases
Main aliases
tf.math.reduce_max(
input_tensor, axis=None, keepdims=False, name=None
)
Used in the notebooks
This is the reduction operation for the elementwise tf.math.maximum op.
Reduces input_tensor
along the dimensions given in axis
. Unless keepdims
is true, the rank of the tensor is reduced by 1 for each of the entries in axis
, which must be unique. If keepdims
is true, the reduced dimensions are retained with length 1.
If axis
is None, all dimensions are reduced, and a tensor with a single element is returned.
Usage example |
---|
>>> x = tf.constant([5, 1, 2, 4]) >>> tf.reduce_max(x) <tf.Tensor: shape=(), dtype=int32, numpy=5> >>> x = tf.constant([-5, -1, -2, -4]) >>> tf.reduce_max(x) <tf.Tensor: shape=(), dtype=int32, numpy=-1> >>> x = tf.constant([4, float('nan')]) >>> tf.reduce_max(x) <tf.Tensor: shape=(), dtype=float32, numpy=nan> >>> x = tf.constant([float('nan'), float('nan')]) >>> tf.reduce_max(x) <tf.Tensor: shape=(), dtype=float32, numpy=nan> >>> x = tf.constant([float('-inf'), float('inf')]) >>> tf.reduce_max(x) <tf.Tensor: shape=(), dtype=float32, numpy=inf> |
See the numpy docs for np.amax
and np.nanmax
behavior.
Args | |
---|---|
input_tensor | The tensor to reduce. Should have real numeric type. |
axis | The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)). |
keepdims | If true, retains reduced dimensions with length 1. |
name | A name for the operation (optional). |
Returns |
---|
The reduced tensor. |