tf.math.reduce_prod  |  TensorFlow v2.16.1 (original) (raw)

tf.math.reduce_prod

Stay organized with collections Save and categorize content based on your preferences.

Computes tf.math.multiply of elements across dimensions of a tensor.

View aliases

Main aliases

tf.reduce_prod

tf.math.reduce_prod(
    input_tensor, axis=None, keepdims=False, name=None
)

Used in the notebooks

Used in the guide Used in the tutorials
Advanced automatic differentiation Sparse weights using structural pruning Intro to Autoencoders TFP Release Notes notebook (0.12.1) TensorFlow Distributions: A Gentle Introduction

This is the reduction operation for the elementwise tf.math.multiply op.

Reduces input_tensor along the dimensions given in axis. Unless keepdims is true, the rank of the tensor is reduced by 1 for each entry in axis. If keepdims is true, the reduced dimensions are retained with length 1.

If axis is None, all dimensions are reduced, and a tensor with a single element is returned.

For example
>>> x = tf.constant([[1., 2.], [3., 4.]]) >>> tf.math.reduce_prod(x) <tf.Tensor: shape=(), dtype=float32, numpy=24.> >>> tf.math.reduce_prod(x, 0) <tf.Tensor: shape=(2,), dtype=float32, numpy=array([3., 8.], dtype=float32)> >>> tf.math.reduce_prod(x, 1) <tf.Tensor: shape=(2,), dtype=float32, numpy=array([2., 12.], dtype=float32)>
Args
input_tensor The tensor to reduce. Should have numeric type.
axis The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range [-rank(input_tensor), rank(input_tensor)).
keepdims If true, retains reduced dimensions with length 1.
name A name for the operation (optional).
Returns
The reduced tensor.

numpy compatibility

Equivalent to np.prod