tf.math.multiply  |  TensorFlow v2.16.1 (original) (raw)

tf.math.multiply

Stay organized with collections Save and categorize content based on your preferences.

Returns an element-wise x * y.

View aliases

Main aliases

tf.multiply

Compat aliases for migration

SeeMigration guide for more details.

tf.compat.v1.multiply

tf.math.multiply(
    x, y, name=None
)

Used in the notebooks

Used in the guide Used in the tutorials
Introduction to Tensors Migrate the SavedModel workflow Training & evaluation with the built-in methods Customization basics: tensors and operations Parametrized Quantum Circuits for Reinforcement Learning Universal Sentence Encoder Universal Sentence Encoder-Lite demo TFX Estimator Component Tutorial

For example:

x = tf.constant(([1, 2, 3, 4])) tf.math.multiply(x, x) <tf.Tensor: shape=(4,), dtype=..., numpy=array([ 1, 4, 9, 16], dtype=int32)>

Since tf.math.multiply will convert its arguments to Tensors, you can also pass in non-Tensor arguments:

tf.math.multiply(7,6) <tf.Tensor: shape=(), dtype=int32, numpy=42>

If x.shape is not the same as y.shape, they will be broadcast to a compatible shape. (More about broadcastinghere.)

For example:

x = tf.ones([1, 2]); y = tf.ones([2, 1]); x * y # Taking advantage of operator overriding <tf.Tensor: shape=(2, 2), dtype=float32, numpy= array([[1., 1.], [1., 1.]], dtype=float32)>

The reduction version of this elementwise operation is tf.math.reduce_prod

Args
x A Tensor. Must be one of the following types: bfloat16,half, float32, float64, uint8, int8, uint16,int16, int32, int64, complex64, complex128.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).
Returns

A Tensor. Has the same type as x.

Raises
InvalidArgumentError: When x and y have incompatible shapes or types.