Module: tf.math | TensorFlow v2.0.0 (original) (raw)
Math Operations.
TensorFlow provides a variety of math functions including:
- Basic arithmetic operators and trigonometric functions.
- Special math functions (like: tf.math.igamma and tf.math.zeta)
- Complex number functions (like: tf.math.imag and tf.math.angle)
- Reductions and scans (like: tf.math.reduce_mean and tf.math.cumsum)
- Segment functions (like: tf.math.segment_sum)
See: tf.linalg for matrix and tensor functions.
About Segmentation
TensorFlow provides several operations that you can use to perform common math computations on tensor segments. Here a segmentation is a partitioning of a tensor along the first dimension, i.e. it defines a mapping from the first dimension ontosegment_ids
. The segment_ids
tensor should be the size of the first dimension, d0
, with consecutive IDs in the range 0
to k
, where k<d0
. In particular, a segmentation of a matrix tensor is a mapping of rows to segments.
For example:
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.math.segment_sum(c, tf.constant([0, 0, 1]))
# ==> [[0 0 0 0]
# [5 6 7 8]]
The standard segment_*
functions assert that the segment indices are sorted. If you have unsorted indices use the equivalent unsorted_segment_
function. Thses functions take an additional argument num_segments
so that the output tensor can be efficiently allocated.
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.math.unsorted_segment_sum(c, tf.constant([0, 1, 0]), num_segments=2)
# ==> [[ 6, 8, 10, 12],
# [-1, -2, -3, -4]]
Functions
abs(...): Computes the absolute value of a tensor.
accumulate_n(...): Returns the element-wise sum of a list of tensors.
acos(...): Computes acos of x element-wise.
acosh(...): Computes inverse hyperbolic cosine of x element-wise.
add(...): Returns x + y element-wise.
add_n(...): Adds all input tensors element-wise.
angle(...): Returns the element-wise argument of a complex (or real) tensor.
argmax(...): Returns the index with the largest value across axes of a tensor.
argmin(...): Returns the index with the smallest value across axes of a tensor.
asin(...): Computes the trignometric inverse sine of x element-wise.
asinh(...): Computes inverse hyperbolic sine of x element-wise.
atan(...): Computes the trignometric inverse tangent of x element-wise.
atan2(...): Computes arctangent of y/x
element-wise, respecting signs of the arguments.
atanh(...): Computes inverse hyperbolic tangent of x element-wise.
bessel_i0(...): Computes the Bessel i0 function of x
element-wise.
bessel_i0e(...): Computes the Bessel i0e function of x
element-wise.
bessel_i1(...): Computes the Bessel i1 function of x
element-wise.
bessel_i1e(...): Computes the Bessel i1e function of x
element-wise.
betainc(...): Compute the regularized incomplete beta integral \(I_x(a, b)\).
bincount(...): Counts the number of occurrences of each value in an integer array.
ceil(...): Returns element-wise smallest integer not less than x.
confusion_matrix(...): Computes the confusion matrix from predictions and labels.
conj(...): Returns the complex conjugate of a complex number.
cos(...): Computes cos of x element-wise.
cosh(...): Computes hyperbolic cosine of x element-wise.
count_nonzero(...): Computes number of nonzero elements across dimensions of a tensor.
cumprod(...): Compute the cumulative product of the tensor x
along axis
.
cumsum(...): Compute the cumulative sum of the tensor x
along axis
.
cumulative_logsumexp(...): Compute the cumulative log-sum-exp of the tensor x
along axis
.
digamma(...): Computes Psi, the derivative of Lgamma (the log of the absolute value of
divide(...): Computes Python style division of x
by y
.
divide_no_nan(...): Computes an unsafe divide which returns 0 if the y is zero.
equal(...): Returns the truth value of (x == y) element-wise.
erf(...): Computes the Gauss error function of x
element-wise.
erfc(...): Computes the complementary error function of x
element-wise.
exp(...): Computes exponential of x element-wise. \(y = e^x\).
expm1(...): Computes exp(x) - 1
element-wise.
floor(...): Returns element-wise largest integer not greater than x.
floordiv(...): Divides x / y
elementwise, rounding toward the most negative integer.
floormod(...): Returns element-wise remainder of division. When x < 0
xor y < 0
is
greater(...): Returns the truth value of (x > y) element-wise.
greater_equal(...): Returns the truth value of (x >= y) element-wise.
igamma(...): Compute the lower regularized incomplete Gamma function P(a, x)
.
igammac(...): Compute the upper regularized incomplete Gamma function Q(a, x)
.
imag(...): Returns the imaginary part of a complex (or real) tensor.
in_top_k(...): Says whether the targets are in the top K
predictions.
invert_permutation(...): Computes the inverse permutation of a tensor.
is_finite(...): Returns which elements of x are finite.
is_inf(...): Returns which elements of x are Inf.
is_nan(...): Returns which elements of x are NaN.
is_non_decreasing(...): Returns True
if x
is non-decreasing.
is_strictly_increasing(...): Returns True
if x
is strictly increasing.
l2_normalize(...): Normalizes along dimension axis
using an L2 norm.
lbeta(...): Computes \(ln(|Beta(x)|)\), reducing along the last dimension.
less(...): Returns the truth value of (x < y) element-wise.
less_equal(...): Returns the truth value of (x <= y) element-wise.
lgamma(...): Computes the log of the absolute value of Gamma(x)
element-wise.
log(...): Computes natural logarithm of x element-wise.
log1p(...): Computes natural logarithm of (1 + x) element-wise.
log_sigmoid(...): Computes log sigmoid of x
element-wise.
log_softmax(...): Computes log softmax activations.
logical_and(...): Returns the truth value of x AND y element-wise.
logical_not(...): Returns the truth value of NOT x element-wise.
logical_or(...): Returns the truth value of x OR y element-wise.
logical_xor(...): Logical XOR function.
maximum(...): Returns the max of x and y (i.e. x > y ? x : y) element-wise.
minimum(...): Returns the min of x and y (i.e. x < y ? x : y) element-wise.
mod(...): Returns element-wise remainder of division. When x < 0
xor y < 0
is
multiply(...): Returns x * y element-wise.
multiply_no_nan(...): Computes the product of x and y and returns 0 if the y is zero, even if x is NaN or infinite.
negative(...): Computes numerical negative value element-wise.
nextafter(...): Returns the next representable value of x1
in the direction of x2
, element-wise.
not_equal(...): Returns the truth value of (x != y) element-wise.
polygamma(...): Compute the polygamma function \(\psi^{(n)}(x)\).
polyval(...): Computes the elementwise value of a polynomial.
pow(...): Computes the power of one value to another.
real(...): Returns the real part of a complex (or real) tensor.
reciprocal(...): Computes the reciprocal of x element-wise.
reciprocal_no_nan(...): Performs a safe reciprocal operation, element wise.
reduce_all(...): Computes the "logical and" of elements across dimensions of a tensor.
reduce_any(...): Computes the "logical or" of elements across dimensions of a tensor.
reduce_euclidean_norm(...): Computes the Euclidean norm of elements across dimensions of a tensor.
reduce_logsumexp(...): Computes log(sum(exp(elements across dimensions of a tensor))).
reduce_max(...): Computes the maximum of elements across dimensions of a tensor.
reduce_mean(...): Computes the mean of elements across dimensions of a tensor.
reduce_min(...): Computes the minimum of elements across dimensions of a tensor.
reduce_prod(...): Computes the product of elements across dimensions of a tensor.
reduce_std(...): Computes the standard deviation of elements across dimensions of a tensor.
reduce_sum(...): Computes the sum of elements across dimensions of a tensor.
reduce_variance(...): Computes the variance of elements across dimensions of a tensor.
rint(...): Returns element-wise integer closest to x.
round(...): Rounds the values of a tensor to the nearest integer, element-wise.
rsqrt(...): Computes reciprocal of square root of x element-wise.
scalar_mul(...): Multiplies a scalar times a Tensor
or IndexedSlices
object.
segment_max(...): Computes the maximum along segments of a tensor.
segment_mean(...): Computes the mean along segments of a tensor.
segment_min(...): Computes the minimum along segments of a tensor.
segment_prod(...): Computes the product along segments of a tensor.
segment_sum(...): Computes the sum along segments of a tensor.
sigmoid(...): Computes sigmoid of x
element-wise.
sign(...): Returns an element-wise indication of the sign of a number.
sin(...): Computes sine of x element-wise.
sinh(...): Computes hyperbolic sine of x element-wise.
softmax(...): Computes softmax activations.
softplus(...): Computes softplus: log(exp(features) + 1)
.
softsign(...): Computes softsign: features / (abs(features) + 1)
.
sqrt(...): Computes square root of x element-wise.
square(...): Computes square of x element-wise.
squared_difference(...): Returns (x - y)(x - y) element-wise.
subtract(...): Returns x - y element-wise.
tan(...): Computes tan of x element-wise.
tanh(...): Computes hyperbolic tangent of x
element-wise.
top_k(...): Finds values and indices of the k
largest entries for the last dimension.
truediv(...): Divides x / y elementwise (using Python 3 division operator semantics).
unsorted_segment_max(...): Computes the maximum along segments of a tensor.
unsorted_segment_mean(...): Computes the mean along segments of a tensor.
unsorted_segment_min(...): Computes the minimum along segments of a tensor.
unsorted_segment_prod(...): Computes the product along segments of a tensor.
unsorted_segment_sqrt_n(...): Computes the sum along segments of a tensor divided by the sqrt(N).
unsorted_segment_sum(...): Computes the sum along segments of a tensor.
xdivy(...): Returns 0 if x == 0, and x / y otherwise, elementwise.
xlogy(...): Returns 0 if x == 0, and x * log(y) otherwise, elementwise.
zero_fraction(...): Returns the fraction of zeros in value
.
zeta(...): Compute the Hurwitz zeta function \(\zeta(x, q)\).