BioMoR: Bioinformatics Modeling with Recursion and Autoencoder-Based Ensemble (original) (raw)
Tools for bioinformatics modeling using recursive transformer-inspired architectures, autoencoders, random forests, XGBoost, and stacked ensemble models. Includes utilities for cross-validation, calibration, benchmarking, and threshold optimization in predictive modeling workflows. The methodology builds on ensemble learning (Breiman 2001 <doi:10.1023/A:1010933404324>), gradient boosting (Chen and Guestrin 2016 <doi:10.1145/2939672.2939785>), autoencoders (Hinton and Salakhutdinov 2006 <doi:10.1126/science.1127647>), and recursive transformer efficiency approaches such as Mixture-of-Recursions (Bae et al. 2025 <doi:10.48550/arXiv.2507.10524>).
Version: | 0.1.0 |
---|---|
Depends: | R (≥ 4.2.0) |
Imports: | caret, recipes, themis, xgboost, magrittr, dplyr, pROC |
Suggests: | randomForest, testthat (≥ 3.0.0), PRROC, ggplot2, purrr, tibble, yardstick, knitr, rmarkdown |
Published: | 2025-10-03 |
DOI: | 10.32614/CRAN.package.BioMoR |
Author: | MD. Arshad [aut, cre] |
Maintainer: | MD. Arshad |
License: | MIT + file |
NeedsCompilation: | no |
Materials: | NEWS |
CRAN checks: | BioMoR results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=BioMoRto link to this page.