Многочлен Чебышева | это... Что такое Многочлен Чебышева? (original) (raw)

Многочлен Чебышева

Многочлен Чебышева

Многочле́ны Чебышёва — две последовательности многочленов \{ T_n(x)\}_{n=0}^{\infty} и \{ U_n(x)\}_{n=0}^{\infty}, названные в честь их первооткрывателя Пафнутия Львовича Чебышёва.

T1, T2, T3, T4, T5

Многочлен Чебышёва первого рода T n(x) характеризуется как многочлен степени n со старшим коэффициентом 2_n_ - 1, который меньше всего отклоняется от нуля на интервале [ − 1,1].

U1, U2, U3, U4, U5

Многочлен Чебышёва второго рода U n(x) характеризуется как многочлен степени n со старшим коэффициентом 2_n_, интеграл от абсолютной величины которого по интервалу [ − 1,1] принимает наименьшее возможное значение.

Содержание

Рекурсивное определение

Многочлены Чебышёва первого рода T n(x) могут быть определены с помощью рекуррентного соотношения:

T_0(x) = 1 \,

T_1(x) = x \,

T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x). \,

Многочлены Чебышёва второго рода U n(x) могут быть определены с помощью рекуррентного соотношения:

U_0(x) = 1 \,

U_1(x) = 2x \,

U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x). \,

Явные формулы

Многочлены Чебышёва являются решениями уравнения Пелля:

T n(x)2 − (_x_2 − 1)U n − 1(x)2 = 1

в кольце многочленов с вещественными коэффициентами и удовлетворяют тождеству:

T_n(x) + U_{n-1}(x)\sqrt{x^2-1} = (x + \sqrt{x^2-1})^n.

Из последнего тождества также следуют явные формулы:

T_n(x)=\frac{(x+\sqrt{x^2-1})^n+(x-\sqrt{x^2-1})^n}{2} = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} (x^2-1)^k x^{n-2k};

U_n(x)=\frac{(x+\sqrt{x^2-1})^{n+1}-(x-\sqrt{x^2-1})^{n+1}}{2\sqrt{x^2-1}} = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n+1}{2k+1} (x^2-1)^k x^{n-2k}.

Тригонометрическое определение

Многочлены Чебышёва первого рода T n(x) могут быть также определены с помощью равенства:

T_n(\cos(\theta))=\cos(n\theta). \,

или, что почти эквивалентно,

T n(z) = cos(n_arccos_z)

Многочлены Чебышёва второго рода U n(x) могут быть также определены с помощью равенства:

 U_n(\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin\theta}.

Примеры

Несколько первых многочленов Чебышёва первого рода

 T_0(x) = 1 \,

 T_1(x) = x \,

 T_2(x) = 2x^2 - 1 \,

 T_3(x) = 4x^3 - 3x \,

 T_4(x) = 8x^4 - 8x^2 + 1 \,

 T_5(x) = 16x^5 - 20x^3 + 5x \,

 T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1 \,

 T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x \,

Несколько первых многочленов Чебышёва второго рода

 U_0(x) = 1 \,

 U_1(x) = 2x \,

 U_2(x) = 4x^2 - 1 \,

 U_3(x) = 8x^3 - 4x \,

 U_4(x) = 16x^4 - 12x^2 + 1 \,

 U_5(x) = 32x^5 - 32x^3 + 6x \,

 U_6(x) = 64x^6 - 80x^4 + 24x^2 - 1 \,

Свойства

Многочлены Чебышёва обладают следующими свойствами:

Обобщения

Вопрос о многочленах минимальной нормы с фиксированными коэффициентами при двух старших степенях был рассмотрен позднее Золотарёвым, найденные им полиномы носят название многочлены Золотарёва.

См. также

Ссылки

Wikimedia Foundation.2010.

Полезное

Смотреть что такое "Многочлен Чебышева" в других словарях: