Перпендикуляр | это... Что такое Перпендикуляр? (original) (raw)

Перпендикуля́рностьбинарное отношение между различными объектами (векторами, прямыми, подпространствами и. т. д.) в евклидовом пространстве. Частный случай ортогональности.

Содержание

Перпендикулярность прямых на плоскости

Две прямые на плоскости называются перпендикулярными, если при пересечении образуют 4 прямых угла.

В аналитическом выражении прямые, заданные линейными функциями y=\operatorname{tg}\alpha_1 x+b_1 и y=\operatorname{tg}\alpha_2 x+b_2 будут перпендикулярны, если выполнено условие \alpha_2=\frac{1}{2}\pi+\alpha_1. (Здесь α1,α2 — углы наклона прямой к горизонтали)

Перпендикулярность прямых в пространстве

Две прямые в пространстве перпендикулярны друг другу, если они соответственно параллельны некоторым двум другим прямым, лежащим в одной плоскости и перпендикулярным в ней.

Построение перпендикуляра на плоскости

Построение перпендикуляра

Шаг 1: (красный) С помощью циркуля проведём полуокружность с центром в точке P, получив точки А и В.

Шаг 2: (зелёный) Не меняя радиуса, построим две полуокружности с центром в точках A' и В' соответственно, проходящими через точку Р. Кроме точки Р есть ещё одна точка пересечения этих полуокружностей, назовём её Q.

Шаг 3: (синий) Соединяем точки Р и Q. PQ и есть перпендикуляр к прямой АВ.

Перпендикулярность прямой и плоскости

Определение: Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой из этой плоскости.

Признак: Если прямая перпендикулярна каждой из двух пересекающихся прямых плоскости, то она перпендикулярна этой плоскости.

Плоскость, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

Перпендикулярность плоскостей в 3-мерном пространстве

Две плоскости называются перпендикулярными, если двугранный угол между ними равен 90 градусам.

Перпендикулярность плоскостей в 4-мерном пространстве

Перпендикулярность плоскостей в четырёхмерном пространстве имеет два смысла: плоскости могут быть перпендикулярны в 3-мерном смысле, если они пересекаются по прямой (а следовательно, лежат в одной гиперплоскости), и двугранный угол между ними равен 90°.

Плоскости могут быть также перпендикулярны в 4-мерном смысле, если они пересекаются в точке (а следовательно, не лежат в одной гиперплоскости), и любые 2 прямые, проведённые в этих плоскостях через точку их пересечения (каждая прямая в своей плоскости), перпендикулярны.

В 4-мерном пространстве через данную точку можно провести ровно 2 взаимно перпендикулярные плоскости в 4-мерном смысле (поэтому 4-мерное евклидово пространство можно представить как декартово произведение двух плоскостей). Если же объединить оба вида перпендикулярности, то через данную точку можно провести 6 взаимно перпендикулярных плоскостей (перпендикулярных в любом из двух вышеупомянутых значений).

Существование шести взаимно перпендикулярных плоскостей можно пояснить таким примером. Пусть дана система декартовых координат x y z t. Для каждой пары координатных прямых существует плоскость, включающая эти две прямые. Таких пар 6 (C^2_4): xy, xz, xt, yz, yt, zt, и им соответствуют 6 плоскостей. Те из этих плоскостей, которые включают одноимённую ось, перпендикулярны в 3-мерном смысле и пересекаются по прямой (например, xy и xz, yz и zt), а те, которые не включают одноимённых осей, перпендикулярны в 4-мерном смысле и пересекаются в точке (например, xy и zt, yz и xt).

Перпендикулярность прямой и гиперплоскости

Пусть задано n-мерное евклидово пространство \mathbb{R}^n(n>2) и ассоциированное с ним векторное пространство W n, а прямая l с направляющим векторным пространством L_1 и гиперплоскость Π_k с направляющим векторным пространством L k (где L_1 \subset W^n, L^k \subset W^n,\ k < n ) принадлежат пространству \mathbb{R}^n.

Прямая l называется перпендикулярной гиперплоскости Π_k_, если подпространство _L_1 ортогонально подпространству L k, то есть (\forall \vec a \in L_1)\ (\forall \vec b \in L_k)\ \vec a \vec b=0

Смежные понятия

Wikimedia Foundation.2010.