Вписанная окружность | это... Что такое Вписанная окружность? (original) (raw)

Окружность, вписанная в многоугольник ABCDE

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Содержание

В многоугольнике

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.

r=\frac{S}{p}

В треугольнике

Свойства вписанной окружности:

r=\frac{S}{p}=\sqrt{\frac{(p-a)(p-b)(p-c)}{p}}

В четырёхугольнике

Описанный четырёхугольник, если у него нет самопересечений («простой»), должен быть выпуклым.

В выпуклый четырёхугольник ABCD можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны: AB + CD = BC + AD.

Во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности лежат на одной прямой (теорема Ньютона). На ней же лежит середина отрезка с концами в точках пересечения противоположных сторон четырёхугольника. Эта прямая называется прямой Гаусса. Центр вписанной в четырёхугольник окружности — точка пересечения высот треугольника с вершинами в точке пересечения диагоналей и точках пересечения противоположных сторон (теорема Брокара).

В сферическом треугольнике

Вписанная окружность для сферического треугольника — это окружность, касающаяся всех его сторон.

\operatorname{tg}r=\sqrt{\frac{\sin (p-a)\sin (p-b)\sin (p-c)}{\sin p}}\,

См. также

Примечания

  1. Здесь радиус окружности измеряется по сфере, то есть представляет собой градусную меру дуги большого круга, соединяющей точку пересечения радиуса сферы, проведенного из центра сферы через центр окружности, со сферой и точку касания окружностью стороны треугольника.
  2. 1 2 Степанов Н. Н. Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — 154 с.

Литература