Формула Остроградского | это... Что такое Формула Остроградского? (original) (raw)
Фо́рмула Острогра́дского — формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью:
то есть интеграл от дивергенции векторного поля , распространённый по некоторому объёму T, равен потоку вектора через поверхность S, ограничивающую данный объём.
Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности.
В работе Остроградского формула записана в следующем виде:
где ω и s — дифференциалы объёма и поверхности соответственно. В современной записи ω = _d_Ω — элемент объёма, s = d S — элемент поверхности. — функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью.
Обобщением формулы Остроградского является формула Стокса для многообразий с краем.
История
Общий метод преобразования тройного интеграла к поверхностному впервые показал Карл Фридрих Гаусс (1813, 1830 гг.) на примере задач электродинамики[1].
В 1826 году М. В. Остроградский вывел формулу в общем виде, представив её в виде теоремы (опубликовано в 1831 году). Многомерное обобщение формулы М. В. Остроградский опубликовал в 1834 году[1]. С помощью данной формулы Остроградский нашёл выражение производной по параметру от _n_-кратного интеграла с переменными пределами и получил формулу для вариации _n_-кратного интеграла.
За рубежом формула называется формулой Гаусса или «формулой (теоремой) Гаусса—Остроградского».
См. также
Литература
- Остроградский М. В. Note sur les integrales definies. // Mem. 1’Acad. (VI), 1, стр. 117—122, 29/Х 1828 (1831).
- Остроградский М. В. Memoire sur le calcul des variations des integrales multiples. // Mem. 1’Acad., 1, стр. 35—58, 24/1 1834 (1838).