Нуклеофил | это... Что такое Нуклеофил? (original) (raw)

Нуклеофил в химии (лат. nucleus «ядро», др.-греч. φιλέω «любить») — реагент, образующий химическую связь с партнером по реакции (электрофилом) по донорно-акцепторному механизму, предоставляя электронную пару, образующую новую связь[1]. Вследствие того, что нуклеофилы отдают электроны, они по определению являются основаниями Льюиса. В роли нуклеофилов теоретически могут выступать все ионы и нейтральные молекулы с неподеленной электронной парой.

Нуклеофил — электроноизбыточный химический реагент, способный взаимодействовать с электронодефицитными соединениями (электрофилами). Примерами нуклеофилов являются анионы (Cl−, Br−, I−) и соединения с неподелённой электронной парой (NH3, H2O).

В ходе реакций замещения или присоединения нуклеофил атакует по месту полного или частичного положительного заряда на электрофиле. Название «нуклеофил» означает «любящий ядро» и отображает эту способность (атомное ядро заряжено положительно). Относительная реакционная способность нуклеофилов называется нуклеофильность. В пределах одного ряда периодической системы более сильные основания (с бóльшим значением pKa сопряженной кислоты) являются лучшими нуклеофилами. В пределах одной группы на нуклеофильность большее влияние оказывает поляризуемость — лёгкость, с которой деформируется электронное облако атома или молекулы. К примеру, в водных растворах иодид-ион I− более нуклеофилен, чем фторид F−[2].

Амбидентные нуклеофилы имеют два и более реакционных центра. К примеру, тиоцианат-ион SCN− может атаковать электрофил либо атомом серы, либо атомом азота. Реакции галогеноалканов с SCN− часто приводят к образованию смеси RSCN (алкилтиоцианата) и RNCS (алкилизотиоцианата).

Термины «нуклеофил» и «электрофил» были введены в 1929 Кристофером Ингольдом[3], заменив предложенные ранее (в 1925) Лэпворсом «катионоид» и «анионоид»[4].

Содержание

Примеры

В показанном ниже примере бимолекулярного нуклеофильного замещения (SN2) атом кислорода гидроксид-иона донирует пару электронов на связывание с атомом углерода в молекуле бромэтана. Связь между атомами углерода и брома разрывается по гетеролитическому механизму: бром принимает оба электрона этой связи и уходит в виде иона Br−. В данной реакции OH− является нуклеофилом, а CH3CH2Br — электрофилом.

Замещение брома на гидроксид в молекуле бромэтана

В данной реакции атака нуклеофила происходит со стороны, противоположной уходящей группе. Вследствие этого SN2-процессы сопровождаются обращением (инверсией) конфигурации.

Классификация

Нуклеофилы можно классифицировать несколькими способами: по типу орбитали, с которой донируются электроны, и по природе атома, который образует связь.

По типу реагирующей орбитали

В зависимости от природы орбитали, на которой располагались электроны, пошедшие на образование связи с электрофилом, можно выделить:

По атому, образующему связь

Углеродные нуклеофилы

Нуклеофилами с реакционным центром на атоме углерода являются:

Резонансные структуры енолят-иона

Азотные нуклеофилы

Примерами азотных нуклеофилов являются аммиак (NH3), органические амины (RNH2, R2NH, R3N) и азиды (R−N3).

Взаимодействие триэтиламина с первичным алкилиодидом

Кислородные нуклеофилы

Типичными кислородными нуклеофилами являются вода (H2O), гидроксид-ион (OH−), спирты (ROH) и алкоксиды (RO−). В показанной ниже разновидности реакции Вильямсона сильное основание депротонирует спирт с образованием алкоксида. Атом кислорода затем внутримолекулярно замещает уходящую группу, приводя к образованию эпоксида − трёхчленного гетероцикла с одним атомом кислорода:

Образование эпоксида по реакции Вильямсона

Серные нуклеофилы

Серосодержащие соединения обычно являются хорошими нуклеофилами, так как атом серы легко поляризуется, что облегчает передачу электронной пары. Типичные нуклеофилы этого класса — тиолы (RSH) и тиоляты (RS−).

Тиолят-ион в качестве нуклеофила

Шкалы нуклеофильности

Известно несколько способов количественного описания реакционной способности нуклеофилов. Приведенные ниже методы основаны на изучении экспериментальных данных о скорости определенных реакций с участием большого количества нуклеофилов и электрофилов. Как правило, реагенты с выраженным альфа-эффектом не включаются в эти корреляции.

Уравнение Свена-Скотта

Уравнение Свена-Скотта было выведено в 1953 году и является первой попыткой количественно описать реакционную способность нуклеофилов в реакциях SN2[5][6]:

 \lg { \left ( \frac{k}{k_0} \right ) } = S\cdot n \,

В этом уравнении k — константа скорости реакции стандартного субстрата с данным нуклеофилом, k0 — константа скорости реакции субстрата со стандартным нуклеофилом (водой), S — параметр чувствительности субстрата к изменению нуклеофила (для CH3Br или CH3I S принимается равным 1), n — параметр нуклеофильности (для воды n = 0, табл. 1, 2).

Таким образом, для реакций

CH3I + H2O → CH3OH + HI

CH3I + Nuc−H → CH3−Nuc + HI

уравнение Свена-Скотта можно записать как

 \lg { \left ( \frac{k_{CH_3I,NucH}}{k_{CH_3I,H_2O}} \right ) } = n \,

Табл. 1. Параметры нуклеофильности n для стандартного нуклеофила CH3Br и стандартного растворителя H2O при 25 °C[7]

Нуклеофил Значение n Нуклеофил Значение n Нуклеофил Значение n
SO32− 5,16 CN− 5,10 I− 5,04
SCN− 4,77 HO− 4,20 N3− 4,00
Br− 3,89 HCO3− 3,80 Cl− 3,04
CH3COO− 2,72 SO42− 2,50 F− 2,00
NO3− 1,03 CH3OH 0,70 H2O 0,00

Табл. 2. Параметры нуклеофильности n для стандартного нуклеофила CH3I и стандартного растворителя MeOH при 25 °C[8]

Нуклеофил Значение n Нуклеофил Значение n Нуклеофил Значение n
F− 2,7 Cl− 4,37 Br− 5,79
I− 7,42 N3− 5,78 NC− 6,70
CH3OH ~0,00 H2O 0,00 CH3CO2− 4,3
PhO− 5,75 CH3O− 6,29 Пиридин 5,23
Анилин 5,70 Триэтиламин 6,66 PhSH 5,7

Уравнение Ричи

Уравнение Ричи было выведено в 1972 году [9] и выражается следующим образом[10]:

\lg\left(\frac{k}{k_0}\right) = N^+,

где k_0 — константа скорости реакции стандартного катиона (обычно соли диазония) с со стандартным нуклеофилом (водой) в водной среде, k — константа скорости реакции с заданным нуклеофилом, N^+ — параметр, зависящий от нуклеофила (табл. 3):

Реакции нуклеофилов с катионами диазония

Табл. 3. Параметры нуклеофильности N+ при 25 °C[9]

Нуклеофил(растворитель) Значение N+ Нуклеофил(растворитель) Значение N+
H2O (H2O) 0,0 MeOH (MeOH) 0,5
CN− (H2O) 3,8 CN− (MeOH) 5,9
HO− (H2O) 4,5 MeO− (MeOH) 7,5
N3− (H2O) 5,4 N3− (MeOH) 8,5
PhS− (ДМСО) 13,1 PhS− (MeOH) 10,7

Важной особенностью уравнения Ричи является отсутствие параметра чувствительности субстрата (σ в уравнении Свена-Скотта). Таким образом, принимается, что относительная реакционная способность двух нуклеофилов определяется только значением N+ и не зависит от партнера по реакции. Это находится в резком противоречии с т. н. принципом взаимозависимости реакционной способности и селективности[11]. Из-за этого уравнение Ричи иногда называется «соотношение постоянной селективности»[12]. Явная упрощенность вызвала ряд публикаций о пределах его применимости[12][13].

Уравнение Майра-Патца

Диарилметильный катион

В 1994 г. Г. Майр и М. Патц, на основании исследования реакционной способности диарилметильных катионов и других соединений, предложили уравнение, описывающее реакционную способность достаточно большого количества нуклеофилов и электрофилов [14]:

 \lg \ k = s(N + E)

В этом уравнении константа скорости реакции второго порядка k, измеренная при 20 °C, связывается с параметром электрофильности E (для бис(_п_-метоксифенил)метильного катиона E = 0), параметром нуклеофильности N и фактором чувствительности s (для реакций 2-метил-1-пентена s = 1). Для реакций незаряженных нуклеофилов константа скорости слабо зависит от растворителя и последний обычно не указывается.

Диарилметильные катионы были выбраны в качестве стандартных электрофилов потому, что их активностью можно управлять подбором заместителя R в _пара_-положении. Таким образом, оказалось возможным измерить реакционную способность очень разных нуклеофилов. Для протестированных соединений параметр N изменяется в диапазоне от −4,47 до 28,95 (Табл. 4)[15].

Некоторые нуклеофилы, для которых измерены параметры нуклеофильности N

Табл. 4. Параметры_ N и s _для некоторых нуклеофилов[15]

Нуклеофил N (s) Нуклеофил N (s)
1 −4,47 (1,32) 2 −0,41 (1,12)
3 +0,96 (1) 4 −0,13 (1,21)
5 +3,61 (1,11) 6 +7,48 (0,89)
7 +13,36 (0,81) PhC−(CN)CH3[16] 28,95 (0,58)

Параметр элекрофильности E для некоторых карбокатионов можно грубо оценить по следующему уравнению [14]:

\ E \approx 1.241 \lg k_w - 5.80,

где kw — константа псевдопервого порядка для реакции карбокатиона с водой при 20 °C.

Нуклеофильность N в уравнении Майра-Патца связана с параметром Ричи N+ следующим соотношением:

\ N \approx 1.20 N_+ + 6.18

Объединенное уравнение

В попытке объединить все вышеописанные уравнения Майр с сотрудниками предложили следующее выражение[17]:

\ \lg k = s_Es_N(N + E),

где sE — параметр чувствительности электрофила; sN — параметр чувствительности электрофила; N и E имеют такое же значение, как и в уравнении Майра-Патца.

С помощью соответствующих подстановок данное выражение можно превратить в любое описанное ранее уравнение:

\ \lg k = 0.6s_EN + 0.6s_EE,

что эквивалентно уравнению Свена-Скотта:

\ \lg k = \lg k_0 + s_EN;

\ \lg k = 0.6N + 0.6E

что эквивалентно уравнению Ричи в немного измененном виде:

\ \lg k - \lg k_0 = N^+

См. также

Примечания

  1. Определение, данное ИЮПАК .pdf
  2. 1 2 Кери Ф., Сандберг Р. Углубленный курс органической химии: Пер. с англ. = Advanced Organic Chemistry / Под ред. В. М. Потапова. — М.: Химия, 1981. — Т. 1. Структура и механизмы. — 520 с.
  3. Ingold, C. K. // Recl. Trav. Chim. Pays-Bas. — 1929.
  4. Lapworth, A. // Nature. — 1925. — Vol. 115. — P. 625.
  5. C. Gardner Swain, Carleton B. Scott. Quantitative Correlation of Relative Rates. Comparison of Hydroxide Ion with Other Nucleophilic Reagents toward Alkyl Halides, Esters, Epoxides and Acyl Halides (англ.) // J. Am. Chem. Soc.. — 1953. — Vol. 75. — P. 141-147.
  6. Swain–Scott equation (англ.). IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (7 September 2009). Архивировано из первоисточника 7 мая 2012. Проверено 22 августа 2010.
  7. Химическая энциклопедия./ Нуклеофильные реакции. // Главный редактор И. Л. Кнунянц. — М.: «Советская энциклопедия», 1988 год. — Т. 3.
  8. R. G. Pearson, H. Sobel, J. Songstad. Nucleophilic reactivity constants toward methyl iodide and _trans_-[Pt(py)2Cl2] (англ.) // J. Am. Chem. Soc.. — 1968. — Vol. 90. — P. 319-326.
  9. 1 2 C. D. Ritchie. Nucleophilic reactivities toward cations (англ.) // Acc. Chem. Res. — 1972. — Vol. 5. — P. 348−354. — DOI:10.1021/ar50058a005
  10. Ritchie equation (англ.). Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). IUPAC. doi:10.1351/goldbook.R05402. Архивировано из первоисточника 7 мая 2012. Проверено 22 августа 2010.
  11. «Чем более активен реагент, тем он менее селективен.»
  12. 1 2 S. Minegishi, H. Mayr. How Constant Are Ritchie's “Constant Selectivity Relationships”? A General Reactivity Scale for n-, π-, and σ-Nucleophiles (англ.) // J. Am. Chem. Soc.. — 2003. — Vol. 125. — P. 286−295. — DOI:10.1021/ja021010y
  13. P. Denton, C. D. Johnson. Selectivity and the Ritchie equation (англ.) // J. Chem. Soc., Perkin Trans. 2. — 1995. — P. 477 - 481. — DOI:10.1039/P29950000477
  14. 1 2 H. Mayr, M. Patz. Scales of Nucleophilicity and Electrophilicity: A System for Ordering Polar Organic and Organometallic Reactions (англ.) // Angew. Chem. Int. Ed. Engl. — 1994. — Vol. 33. — P. 938−957. — DOI:10.1002/anie.199409381
  15. 1 2 H. Mayr et al. Mayr's Database of Reactivity Parameters (англ.). Архивировано из первоисточника 7 мая 2012. Проверено 2 сентября 2010.
  16. В ДМСО.
  17. T. B. Phan, M. Breugst, H. Mayr. Towards a General Scale of Nucleophilicity? (англ.) // Angew. Chem. Int. Ed. — 2006. — Vol. 45. — P. 3869–3874. — DOI:10.1002/anie.200600542