Ряды предпочтительных чисел (в технике) | это... Что такое Ряды предпочтительных чисел (в технике)? (original) (raw)

Ряды предпочтительных чисел (в технике) — это упорядоченная последовательность чисел, предназначенная для унификации значений технических параметров.

Ряды предпочтительных чисел создаются на основе числовых последовательностей. Это могут быть:

Арифметическим рядам свойственна относительная неравномерность расположения соседних членов, то есть старшие члены ряда расположены относительно ближе, чем младшие. У геометрических прогрессий этот недостаток отсутствует, и поэтому они применяются чаще.

Наиболее распространены геометрические прогрессии со знаменателем q=\sqrt[n]{10}, где степень корня _n_= 5, 10, 20, 40, 80. Это — стандартные ряды предпочтительных чисел (ГОСТ 8032-84)[1], соответственно обозначаемые R5, R10, R20, R40, R80. Они связаны с именем француза Ренара, который первым предложил использовать для этих целей геометрическую прогрессию со знаменателем _n_=5.

Каждый ряд содержит в каждом десятичном интервале соответственно 5, 10, 20 и 40 различных чисел. Более редкий ряд всегда является предпочтительным по отношению к более частому. Значения часто используемых первых трёх рядов в порядке их предпочтения:

Члены этих рядов по сравнению с точными значениями округлены в пределах 1,3 %. Предпочтительные числа других десятичных порядков получают умножением или делением на 10, 100 и т. д.

В электротехнике применяют ряды E, рекомендованные МЭК ИСО, со знаменателем геометрической прогрессии q=\sqrt[k]{10}, степени корня k которого равны 3, 6, 12 …: Е3, Е6, Е12,….

Ряды предпочтительных чисел широко применяются в технике. Так, на основе рядов предпочтительных чисел разработаны ряды нормальных линейных размеров (ГОСТ 6636-69)[2]. Они обозначаются как Ra5, Ra10, Ra20, Ra40, Ra80 и имеют большую степень округления (порядка 5 %). Для угловых размеров в ГОСТ 8908-81[3] приведены три ряда нормальных углов. Применение этих рядов позволяет:

Рекомендации по использованию нормальных линейных размеров не распространяется:

Примечания

  1. ГОСТ 8032-84. Предпочтительные числа и ряды предпочтительных чисел
  2. ГОСТ 6636-69. Основные нормы взаимозаменяемости. Нормальные линейные размеры
  3. ГОСТ 8908-81. Основные нормы взаимозаменяемости. Нормальные углы и допуски углов

Литература