Сжатие данных | это... Что такое Сжатие данных? (original) (raw)

Проблемы с содержанием статьи Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.Дополнительные сведения могут быть на странице обсуждения. (26 мая 2012)

У этого термина существуют и другие значения, см. Сжатие.

Сжатие данных (англ. data compression) — алгоритмическое преобразование данных, производимое с целью уменьшения их объёма. Применяется для более рационального использования устройств хранения и передачи данных. Синонимы — упаковка данных, компрессия, сжимающее кодирование, кодирование источника. Обратная процедура называется восстановлением данных (распаковкой, декомпрессией).

Сжатие основано на устранении избыточности, содержащейся в исходных данных. Простейшим примером избыточности является повторение в тексте фрагментов (например, слов естественного или машинного языка). Подобная избыточность обычно устраняется заменой повторяющейся последовательности ссылкой на уже закодированный фрагмент с указанием его длины. Другой вид избыточности связан с тем, что некоторые значения в сжимаемых данных встречаются чаще других. Сокращение объёма данных достигается за счёт замены часто встречающихся данных короткими кодовыми словами, а редких — длинными (энтропийное кодирование). Сжатие данных, не обладающих свойством избыточности (например, случайный сигнал или белый шум, зашифрованные сообщения), принципиально невозможно без потерь.

Содержание

Принципы сжатия данных

В основе любого способа сжатия лежит модель источника данных, или, точнее, модель избыточности. Иными словами, для сжатия данных используются некоторые априорные сведения о том, какого рода данные сжимаются. Не обладая такими сведениями об источнике, невозможно сделать никаких предположений о преобразовании, которое позволило бы уменьшить объём сообщения. Модель избыточности может быть статической, неизменной для всего сжимаемого сообщения, либо строиться или параметризоваться на этапе сжатия (и восстановления). Методы, позволяющие на основе входных данных изменять модель избыточности информации, называются адаптивными. Неадаптивными являются обычно узкоспециализированные алгоритмы, применяемые для работы с данными, обладающими хорошо определёнными и неизменными характеристиками. Подавляющая часть достаточно универсальных алгоритмов являются в той или иной мере адаптивными.

Все методы сжатия данных делятся на два основных класса:

При использовании сжатия без потерь возможно полное восстановление исходных данных, сжатие с потерями позволяет восстановить данные с искажениями, обычно несущественными с точки зрения дальнейшего использования восстановленных данных. Сжатие без потерь обычно используется для передачи и хранения текстовых данных, компьютерных программ, реже — для сокращения объёма аудио- и видеоданных, цифровых фотографий и т. п., в случаях, когда искажения недопустимы или нежелательны. Сжатие с потерями, обладающее значительно большей, чем сжатие без потерь, эффективностью, обычно применяется для сокращения объёма аудио- и видеоданных и цифровых фотографий в тех случаях, когда такое сокращение является приоритетным, а полное соответствие исходных и восстановленных данных не требуется.

Характеристики алгоритмов сжатия и их применимость

Коэффициент сжатия

Коэффициент сжатия — основная характеристика алгоритма сжатия. Она определяется как отношение объёма исходных несжатых данных к объёму сжатых, то есть: k=\frac{S_o}{S_c}, где k — коэффициент сжатия, _S_o — объём исходных данных, а _S_c — объём сжатых. Таким образом, чем выше коэффициент сжатия, тем алгоритм эффективнее. Следует отметить:

Ситуация с k < 1 вполне возможна при сжатии. Принципиально невозможно получить алгоритм сжатия без потерь, который при любых данных образовывал бы на выходе данные меньшей или равной длины. Обоснование этого факта заключается в том, что поскольку число различных сообщений длиной n бит составляет ровно 2_n_, число различных сообщений с длиной меньшей или равной n (при наличии хотя бы одного сообщения меньшей длины) будет меньше 2_n_. Это значит, что невозможно однозначно сопоставить все исходные сообщения сжатым: либо некоторые исходные сообщения не будут иметь сжатого представления, либо нескольким исходным сообщениям будет соответствовать одно и то же сжатое, а значит их нельзя отличить. Однако даже когда алгоритм сжатия увеличивает размер исходных данных, легко добиться того, чтобы их объём гарантировано не мог увеличиться более, чем на 1 бит. Тогда даже в самом худшем случае будет иметь место неравенство:
k\geqslant\frac{S_o}{S_o+1}
Делается это следующим образом: если объём сжатых данных меньше объёма исходных, возвращаем сжатые данные, добавив к ним «1», иначе возвращаем исходные данные, добавив к ним «0»). Пример того, как это реализуется на псевдо-C++, показан ниже:

bin_data_t __compess(bin_data_t input) // bin_data_t - тип данных, означающий произвольную последовательность бит переменной длины { bin_data_t output = arch(input); // функция bin_data_t arch(bin_data_t input) реализует некий алгоритм сжатия данных if (output.size()<input.size()) // если объём сжатых данных меньше объёма исходных, функция bin_data_t::size() возвращает размер данных { output.add_begin(1); // функция bin_data_t::add_begin(bool bit) добавляет бит, равный bit в начало последовательности return output; // возвращаем сжатую последовательность с добавленной «1» } else // иначе (если объём сжатых данных больше или равен объёму исходных) { input.add_begin(0); // добавляем «0» к исходной последовательности return input; // возвращаем исходный файл с добавленным «0» } }

Коэффициент сжатия может быть как постоянным (некоторые алгоритмы сжатия звука, изображения и т. п., например А-закон, μ-закон, ADPCM, усечённое блочное кодирование), так и переменным. Во втором случае он может быть определён либо для каждого конкретного сообщения, либо оценён по некоторым критериям:

или каким-либо другим. Коэффициент сжатия с потерями при этом сильно зависит от допустимой погрешности сжатия или качества, которое обычно выступает как параметр алгоритма. В общем случае постоянный коэффициент сжатия способны обеспечить только методы сжатия данных с потерями.

Допустимость потерь

Основным критерием различия между алгоритмами сжатия является описанное выше наличие или отсутствие потерь. В общем случае алгоритмы сжатия без потерь универсальны в том смысле, что их применение безусловно возможно для данных любого типа, в то время как возможность применения сжатия с потерями должна быть обоснована. Для некоторых типов данных искажения не допустимы в принципе. В их числе

Системные требования алгоритмов

Различные алгоритмы могут требовать различного количества ресурсов вычислительной системы, на которых они реализованы:

В целом, эти требования зависят от сложности и «интеллектуальности» алгоритма. Общая тенденция такова: чем эффективнее и универсальнее алгоритм, тем большие требования к вычислительным ресурсам он предъявляет. Тем не менее, в специфических случаях простые и компактные алгоритмы могут работать не хуже сложных и универсальных. Системные требования определяют их потребительские качества: чем менее требователен алгоритм, тем на более простой, а следовательно, компактной, надёжной и дешёвой системе он может быть реализован.

Так как алгоритмы сжатия и восстановления работают в паре, имеет значение соотношение системных требований к ним. Нередко можно усложнив один алгоритм значительно упростить другой. Таким образом, возможны три варианта:

Алгоритм сжатия требует больших вычислительных ресурсов, нежели алгоритм восстановления.

Это наиболее распространённое соотношение, характерное для случаев, когда однократно сжатые данные будут использоваться многократно. В качестве примера можно привести цифровые аудио- и видеопроигрыватели.

Алгоритмы сжатия и восстановления требуют приблизительно равных вычислительных ресурсов.

Наиболее приемлемый вариант для линий связи, когда сжатие и восстановление происходит однократно на двух её концах (например, в цифровой телефонии).

Алгоритм сжатия существенно менее требователен, чем алгоритм восстановления.

Такая ситуация характерна для случаев, когда процедура сжатия реализуется простым, часто портативным устройством, для которого объём доступных ресурсов весьма критичен, например, космический аппарат или большая распределённая сеть датчиков. Это могут быть также данные, распаковка которых требуется в очень малом проценте случаев, например запись камер видеонаблюдения.

Алгоритмы сжатия данных неизвестного формата

Имеется два основных подхода к сжатию данных неизвестного формата.

См. также

Литература

Ссылки

Просмотр этого шаблона Методы сжатия
Теория Информация Собственная · Взаимная · Энтропия · Условная энтропия · Сложность · Избыточность Единицы измерения Бит · Нат · Ниббл · Хартли · Формула Хартли
Без потерь Энтропийное сжатие Алгоритм Хаффмана · Адаптивный алгоритм Хаффмана · Алгоритм Шеннона — Фано · Арифметическое кодирование (Интервальное) · Коды Голомба · Дельта · Универсальный код (Элиаса · Фибоначчи) Словарные методы RLE · Deflate · LZ (LZ77/LZ78 · LZSS · LZW · LZWL · LZO · LZMA · LZX · LZRW · LZJB · LZT) Прочее RLE · CTW · BWT · MTF · PPM · DMC
Аудио Теория Свёртка · PCM · Алиасинг · Дискретизация · Теорема Котельникова Методы LPC (LAR · LSP) · WLPC · CELP · ACELP · A-закон · μ-закон · MDCT · Преобразование Фурье · Психоакустическая модель Прочее Компрессор аудиосигнала · Сжатие речи · Полосное кодирование
Изображения Термины Цветовое пространство · Пиксель · Субдискретизация насыщенности · Артефакты сжатия Методы RLE · DPCM · Фрактальный · Вейвлетный · EZW · SPIHT · LP · ДКП · ПКЛ Прочее Битрейт · Test images · PSNR · Квантование
Видео Термины Характеристики видео · Кадр · Типы кадров · Качество видео Методы Компенсация движения · ДКП · Квантование · Вейвлетный Прочее Видеокодек · Rate distortion theory (CBR · ABR · VBR)