Скорость звука | это... Что такое Скорость звука? (original) (raw)
Скорость звука в газах (0 °C; 101325 Па), м/с[1]
Азот | 334 |
---|---|
Аммиак | 415 |
Ацетилен | 327 |
Водород | 1284 |
Воздух | 331 |
Гелий | 965 |
Кислород | 316 |
Метан | 430 |
Угарный газ | 338 |
Углекислый газ | 259 |
Хлор | 206 |
Скорость звука — скорость распространения упругих волн в среде — как продольных в газах, жидкостях и твердых телах, так и поперечных (сдвиговых) в твердой среде. Определяется упругостью и плотностью среды. Скорость звука в газах не является величиной постоянной и зависит от температуры данного вещества, в монокристаллах зависит от направления распространения волны и при заданных внешних условиях обычно не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и скорость звука зависит от частоты, говорят о дисперсии звука. Впервые измерена Уильямом Дерхамом.
Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, поэтому при сжижении газа скорость звука возрастает.
Содержание
- 1 Расчёт скорости в жидкости и газе
- 2 Твёрдые тела
- 3 Скорость звука в воде
- 4 См. также
- 5 Примечания
- 6 Литература
- 7 Ссылки
Расчёт скорости в жидкости и газе
Скорость звука в однородной жидкости (или газе) вычисляется по формуле:
где — адиабатическая сжимаемость среды;
— плотность.
Для газов эта формула выглядит так:
где — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных;
— постоянная Больцмана;
— универсальная газовая постоянная;
— абсолютная температура в кельвинах;
— температура в градусах Цельсия;
— молекулярная масса;
— молярная масса. По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул и в приближении постоянства показателя адиабаты пропорциональна квадратному корню из абсолютной температуры.
Данные выражения являются приближенными, поскольку основываются на уравнениях, описывающих поведение идеального газа. При больших давлениях и температурах необходимо вносить соответствующие поправки.
Для расчета сжимаемости многокомпонентной смеси, состоящей из невзаимодействующих друг с другом жидкостей и/или газов, применяется уравнение Вуда. Это же уравнение применимо и для оценки скорости звука в нейтральных взвесях.
Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.
Твёрдые тела
В однородных твёрдых телах могут существовать два типа объемных волн, отличающихся друг от друга поляризацией колебаний относительно направления распространения волны: продольная (P-волна) и поперечная (S-волна). Скорость распространения первой всегда выше, чем скорость второй
:
где — модуль всестороннего сжатия;
— модуль сдвига;
— модуль Юнга;
— коэффициент Пуассона. Как и для случая с жидкой или газообразной средой, при расчетах должны использоваться адиабатические модули упругости.
В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода. При частоте колебаний ниже частоты Био, скорость упругих волн может быть приблизительно оценена с использованием гораздо более простых уравнений Гассмана.
При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.
Скорость звука в воде
В чистой воде скорость звука составляет 1500 м/с (см. опыт Колладона—Штурма). Прикладное значение имеет также скорость звука в солёной воде океана. Скорость звука увеличивается в более солёной и более тёплой воде. При большем давлении скорость также возрастает, то есть чем глубже, тем скорость звука больше. Разработано несколько теорий распространения звука в воде.
Например, теория Вильсона 1960 года для нулевой глубины даёт следующее значение скорости звука:
,
где c — скорость звука в метрах в секунду, T — температура в градусах Цельсия, S — солёность в промилле.
Иногда также пользуются упрощённой формулой Лероя:
,
где z — глубина в метрах. Эта формула обеспечивает точность порядка 0,1 м/с для T < 20 °C и z < 8 000 м.
При температуре 24 °C, солёности 35 промилле и нулевой глубине, скорость звука равна около 1 532,3 м/c. При T = 4 °C, глубине 100 м и той же солёности скорость звука равна 1 468,5 м/с[2].
См. также
Примечания
- ↑ Скорость звука // под. ред. А. М. Прохорова Физическая энциклопедия. — М.: "Советская энциклопедия", 1988. — Т. 4.
- ↑ Роберт Дж. Урик (Rodert J. Urick) Основы гидроакустики (Principles of underwater sound) Л:Судостроение 1978 (McGraw-Hill 1975)
Литература
- Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1953;
- Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964;
- Колесников А. Е., Ультразвуковые измерения, М., 1970;
- Исакович М. А., Общая акустика, М., 1973.