Диоксид титана | это... Что такое Диоксид титана? (original) (raw)

Порошок оксида титана

Оксид титана(IV) (диоксид титана, двуокись титана, титановые белила, пищевой краситель E171) TiO2 — амфотерный оксид четырёхвалентного титана. Является основным продуктом титановой индустрии (на производство чистого титана идёт лишь около 5 % титановой руды).[1]

Содержание

Строение

Диоксид титана в рутильной форме
Серым цветом обозначены атомы титана, красным — кислорода

Оксид титана существует в виде нескольких модификаций. В природе встречаются кристаллы с тетрагональной сингонией (анатаз, рутил) и ромбической сингонией (брукит). Искусственно получены ещё две модификации высокого давления — ромбическая IV и гексагональная V.

Характеристики кристаллической решётки[2]

Модификация/Параметр Рутил Анатаз Брукит Ромбическая IV Гексагональная V
Параметры элементарной решётки, нм a 0,45929 0,3785 0,51447 0,4531 0,922
b 0,9184 0,5498
c 0,29591 0,9486 0,5145 0,4900 0,5685
Число формульных единиц в ячейке 2 4 8
Пространственная группа P4/mnm I4/amd Pbca Pbcn

При нагревании и анатаз, и брукит необратимо превращаются в рутил (температуры перехода соответственно 400—1000°C и около 750 °C). Основой структур этих модификаций являются октаэдры TiO6, то есть каждый ион Ti4+ окружён шестью ионами O2-, а каждый ион O2- окружён тремя ионами Ti4+. Октаэдры расположены таким образом, что каждый ион кислорода принадлежит трём октаэдрам. В анатазе на один октаэдр приходятся 4 общих ребра, в рутиле — 2.

Нахождение в природе

В чистом виде в природе встречается в виде минералов рутила, анатаза и брукита (по строению первые два имеют тетрагональную, а последний - ромбическую сингонию), причём основную часть составляет рутил.

Третье в мире по запасам рутила месторождение находится в Рассказовском районе Тамбовской области. Крупные месторождения находятся также в Чили (Cerro Bianco), канадской провинции Квебек, Сьерра-Леоне.

Свойства

Физические, термодинамическе свойства

Чистый диоксид титана — бесцветные кристаллы (желтеет при нагревании). Для технических целей применяется в раздробленном состоянии, представляя собой белый порошок. Не растворяется в воде и разбавленных минеральных кислотах (за исключением плавиковой).

для рутила 4,235 г/см3[2]

для анатаза 4,05 г/см3[2] (3,95 г/см3[3])

для брукита 4,1 г/см3[2]

Температура плавления, кипения и разложения для других модификаций не указана, т.к. они переходят в рутильную форму при нагревании (см. выше).

Средняя изобарная теплоёмкость Cp (в Дж/(моль·К))[4]

Модификация Интервал температуры, K
298—500 298—600 298—700 298—800 298—900 298—1000
рутил 60,71 62,39 63,76 64,92 65,95 66,89
анатаз 63,21 65,18 66,59 67,64 68,47 69,12

Термодинамические свойства[5]

Модификация ΔH°f, 298, кДж/моль[6] S°298, Дж/моль/K[7] ΔG°f, 298, кДж/моль[8] C°p, 298, Дж/моль/K[9] ΔHпл., кДж/моль[10]
рутил -944,75 (-943,9[3]) 50,33 -889,49 (-888,6[3]) 55,04 (55,02[3]) 67
анатаз -933,03 (938,6[3]) 49,92 -877,65 (-888,3 [3]) 55,21 (55,48 [3]) 58

Вследствие более плотной упаковки ионов в кристалле рутила увеличивается их взаимное притяжение, снижается фотохимическая активность, увеличиваются твёрдость (абразивность), показатель преломления (2,55 — у анатаза и 2,7 — у рутила), диэлектрическая постоянная.

Химические свойства

Диоксид титана амфотерен, то есть проявляет как осно́вные, так и кислотные свойства (хотя реагирует главным образом с концентрированными кислотами).

Медленно растворяется в концентированной серной кислоте, образуя соответствующие соли четырёхвалентного титана:

TiO2 + 2H2SO4 → Ti(SO4)2 + 2H2O

В концентрированных растворах щелочей или при сплавлении с ними образуются титанаты — соли титановой кислоты (амфотерного гидроксида титана TiO(OH)2)

TiO2 + 2NaOH → Na2TiO3 + H2O

То же происходит и в концентрированных растворах карбонатов или гидрокарбонатов:

TiO2 + K2CO3 → K2TiO3 + CO2↑ TiO2 + 2KHCO3 → K2TiO3 + 2CO2↑ + H2O

C перекисью водорода даёт ортотитановую кислоту:

TiO2 + 2H2O2 → H4TiO4 + О2↑

При нагревании с аммиаком даёт нитрид титана:

2TiO2 + 4NH3 →(t) 4TiN + 6H2O + O2↑

При сплавлении с оксидами, гидроксидами и карбонатами образуются титанаты и двойные оксиды:

TiO2 + BaO → BaO·TiO2

TiO2 + BaCO3 → BaO·TiO2 + CO2↑

TiO2 + Ba(OH)2 → BaO·TiO2 + H2O

При нагревании восстанавливается углеродом и активными металлами (Mg, Ca, Na) до низших оксидов.

При нагревании с хлором в присутствии восстановителей (углерода) образует тетрахлорид титана.

Нагревание до 2200 °C приводит сначала к отщеплению кислорода с образованием синего Ti3O5 (то есть TiO2·Ti2O3), а затем и тёмно-фиолетового Ti2O3.

Гидратированный диоксид TiO2·_n_H2O [гидроксид титана(IV), оксо-гидрат титана, оксогидроксид титана] в зависимости от условий получения может содержать переменные количества связанных с Ti групп ОН, структурную воду, кислотные остатки и адсорбированные катионы. Полученный на холоде свежеосажденный TiO2·_n_H2O хорошо растворяется в разбавленных минеральных и сильных органических кислотах, но почти не растворяется в растворах щелочей. Легко пептизируется с образованием устойчивых коллоидных растворов. При высушивании на воздухе образует объёмистый белый порошок плотностью 2,6 г/см³, приближающийся по составу к формуле TiO2·2H2O (ортотитановая кислота). При нагревании и длительной сушке в вакууме постепенно обезвоживается, приближаясь по составу к формуле TiO2·H2O (метатитановая кислота). Осадки такого состава получаются при осаждении из горячих растворов, при взаимодействии металлического титана с HNO3 и т. п. Их плотность ~ 3,2 г/см³ и выше. Они практически не растворяются в разбавленных кислотах, не способны пептизироваться.

При старении осадки TiO2·_n_H2O постепенно превращается в безводный диоксид, удерживающий в связанном состоянии адсорбированные катионы и анионы. Старение ускоряется кипячением суспензии с водой. Структура образующегося при старении TiO2 определяется условиями осаждения. При осаждении аммиаком из солянокислых растворов при рН < 2 получаются образцы со структурой рутила, при рН 2—5 — со структурой анатаза, из щелочной среды — рентгеноаморфные. Из сульфатных растворов продукты со структурой рутила не образуются.

Токсические свойства, физиологическое действие, опасные свойства

TLV(предельная пороговая концентрация, США): как TWA (среднесменная концентрация, США) 10 мг/м³ A4 (ACGIH 2001).

ПДК в воздухе рабочей зоны - 10 мг/м³ (1998)

ООН — 2546

Добыча и производство

Полная статья получение оксида титана(IV)

Мировое производство диоксида титана на конец 2004 года достигло приблизительно 5 миллионов тонн. [11]

Основными производители и экспортёры диоксида титана:

В России пигментный диоксид титана не производят, но производят технические марки, используемые в металлургии. На территории СНГ диоксид титана производится на Украине предприятиями «Сумыхимпром», город Сумы, «Крымский титан», г. Армянск) и КП "Титано-магниевый комбинат" (г. Запорожье). Сумский государственный институт минеральных удобрений и пигментов (МИНДИП) в своих научно-исследовательских работах особое место уделяет технология получения оксида титана (IV) сульфатным способом: исследование, разработка новых марок, модернизация технологии и аппаратурного оформления процесса.

Как указано выше, диоксид титана встречается в виде минералов, однако этого источника недостаточно, поэтому значительная его часть производится. Существуют два основных промышленных метода получения TiO2: из ильменитового (FeTiO3) концентрата и из тетрахлорида титана.

Производство диоксида титана из ильменитового концентрата

Технология производства состоит из трёх этапов:

Производство диоксида титана из тетрахлорида титана

Существуют три основных метода получения диоксида титана из его тетрахлорида:

Применение

Основные применения диоксида титана:

Мировые мощности по производству пигментов на основе диоксида титана (тыс. тонн/год)[12]

| | 2001 г. | 2002 г. | 2003 г. | 2004 г. | | | ------------- | ------- | ------- | ------- | ---- | | Америка | 1730 | 1730 | 1730 | 1680 | | Запад. Европа | 1440 | 1470 | 1480 | 1480 | | Япония | 340 | 340 | 320 | 320 | | Австралия | 180 | 200 | 200 | 200 | | Прочие страны | 690 | 740 | 1200 | 1400 | | Всего | 4380 | 4480 | 4930 | 5080 |

Другие применения — в производстве резиновых изделий, стекольном производстве (термостойкое и оптическое стекло), как огнеупор (обмазка сварочных электродов и покрытий литейных форм), в косметических средствах (мыло и т.д.), в пищевой промышленности (пищевая добавка E171).

Цены и рынок

Цены на диоксид титана отличаются в зависимости от степени чистоты и марки. Так, особо чистый (99,999 %) диоксид титана в рутильной и анатазной форме стоил в сентябре 2006 года 0,5—1 доллара за грамм (в зависимости от размера покупки), а технический диоксид титана — 2,2—4,8 доллара за килограмм в зависимости от марки и объёма покупки[13].

Нормативы

В настоящее время диоксид титана по ГОСТ 9808-84 не выпускается.

По данным техническим условиям работает ГАК "Титан" (г. Армянск).

По данным техническим условиям работает ОАО "Сумыхимпром" (г. Сумы).

Использованная литература

  1. Б. В. Некрасов. Основы общей химии. Т. I изд. 3-е, испр. и доп. Изд-во «Химия», 1973 г. С. 644, 648
  2. Т. Г. Ахметов, Р. Т. Порфирьева, Л. Г. Гайсин и др. Химическая технология неорганических веществ: в 2 кн. Кн. 1 Под ред. Т. Г. Ахметова.—М.:Высшая школа, 2002 ISBN 5-06-004244-8 С. 369—402
  3. Химия: Справ. изд./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. 2-е изд., стереотип. — М.:Химия, 2000. С. 411
  4. Химическая энциклопедия (электронная версия) С. 593, 594

Ссылки

Примечания

  1. http://www.snab.ru/lkm2/01/03.pdf
  2. 1 2 3 4 Химическая энциклопедия
  3. 1 2 3 4 5 6 7 8 Рабинович. В. А., Хавин З. Я. Краткий химический справочник Л.:Химия, 1977 с. 105
  4. Краткий справочник физико-химических величин. Изд. 8-е, перераб./Под ред. А. А. Равделя и А. М. Пономаревой. — Л.:Химия, 1983. С.60
  5. Кроме изменения стандартной энтальпии плавления там же с. 82
  6. изменение стандартной энтальпии (теплоты образования) при образовании из простых веществ, термодинамически устойчивых при 101,325 кПа (1 атм) и температуре 298 K
  7. стандартная энтропия при температуре 298 K
  8. изменение стандартной энергии Гиббса (теплоты образования) при образовании из простых веществ, термодинамически устойчивых при 101,325 кПа (1 атм) и температуре 298 K
  9. стандартная изобарная теплоёмкость при температуре 298 K
  10. Изменение энтальпии плавления. Данные по Химической энциклопедии с. 593
  11. 1 2 3 4 http://www.titanium-chemical.com
  12. http://www.titanmet.ru/Pages/News.aspx?action=view&nid=4eeff716-272d-433f-a74d-a6e046c66a86&lang=ru
  13. http://www.pure-tio2.com/buy.htm

Wikimedia Foundation.2010.