std::acosh(std::complex) - cppreference.com (original) (raw)
| | | | | --------------------------------------------------------------- | | ------------- | | template< class T > complex<T> acosh( const complex<T>& z ); | | (since C++11) |
Computes complex arc hyperbolic cosine of a complex value z with branch cut at values less than 1 along the real axis.
Contents
[edit] Parameters
[edit] Return value
If no errors occur, the complex arc hyperbolic cosine of z is returned, in the range of a half-strip of nonnegative values along the real axis and in the interval [−iπ; +iπ] along the imaginary axis.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
- std::acosh(std::conj(z)) == std::conj(std::acosh(z)).
- If z is
(±0,+0), the result is(+0,π/2). - If z is
(x,+∞)(for any finite x), the result is(+∞,π/2). - If z is
(x,NaN)(for any[1] finite x), the result is(NaN,NaN)and FE_INVALID may be raised. - If z is
(-∞,y)(for any positive finite y), the result is(+∞,π). - If z is
(+∞,y)(for any positive finite y), the result is(+∞,+0). - If z is
(-∞,+∞), the result is(+∞,3π/4). - If z is
(±∞,NaN), the result is(+∞,NaN). - If z is
(NaN,y)(for any finite y), the result is(NaN,NaN)and FE_INVALID may be raised. - If z is
(NaN,+∞), the result is(+∞,NaN). - If z is
(NaN,NaN), the result is(NaN,NaN).
[edit] Notes
Although the C++ standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".
Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic cosine is acosh z = ln(z + √z+1 √z-1).
For any z, acosh(z) = acos(z), or simply i acos(z) in the upper half of the complex plane.
[edit] Example
Output:
acosh(0.500000,0.000000) = (0.000000,-1.047198) acosh(0.500000,-0.000000) (the other side of the cut) = (0.000000,1.047198) acosh(1.000000,1.000000) = (1.061275,0.904557) i*acos(1.000000,1.000000) = (1.061275,0.904557)
[edit] See also
| acos(std::complex)(C++11) | computes arc cosine of a complex number (\({\small\arccos{z}}\)arccos(z)) (function template) [edit] |
|---|---|
| asinh(std::complex)(C++11) | computes area hyperbolic sine of a complex number (\({\small\operatorname{arsinh}{z}}\)arsinh(z)) (function template) [edit] |
| atanh(std::complex)(C++11) | computes area hyperbolic tangent of a complex number (\({\small\operatorname{artanh}{z}}\)artanh(z)) (function template) [edit] |
| cosh(std::complex) | computes hyperbolic cosine of a complex number (\({\small\cosh{z}}\)cosh(z)) (function template) [edit] |
| acoshacoshfacoshl(C++11)(C++11)(C++11) | computes the inverse hyperbolic cosine (\({\small\operatorname{arcosh}{x}}\)arcosh(x)) (function) [edit] |
| C documentation for cacosh |