scatterhistogram - Create scatter plot with histograms - MATLAB (original) (raw)

Create scatter plot with histograms

Syntax

Description

scatterhistogram([tbl](#mw%5F08f23dbe-f89e-495f-a78a-7256be0908f5),[xvar](#mw%5F2c1aab4d-eba1-4d8b-bc05-3bedcb1f910c),[yvar](#mw%5F397f90f3-8b5a-4fba-9280-c527e40974d0)) creates a scatter plot with marginal histograms from the table tbl. The xvar input indicates the table variable to display along the_x_-axis. The yvar input indicates the table variable to display along the _y_-axis.

example

scatterhistogram([tbl](#mw%5F08f23dbe-f89e-495f-a78a-7256be0908f5),[xvar](#mw%5F2c1aab4d-eba1-4d8b-bc05-3bedcb1f910c),[yvar](#mw%5F397f90f3-8b5a-4fba-9280-c527e40974d0),'GroupVariable',[grpvar](#mw%5F9217d53b-8de6-4511-9a42-56d29f594aff)) uses the table variable specified by grpvar to group observations specified by xvar and yvar.

example

scatterhistogram([xvalues](#mw%5F33b3ba2a-ccfc-4384-84b9-8319ef460236),[yvalues](#mw%5Fccd8392b-693f-40d9-beae-05f0b93aa758)) creates a scatter plot of the data in xvalues andyvalues and displays the marginal histograms for thexvalues and yvalues data along the_x_-axis and _y_-axis, respectively.

example

scatterhistogram([xvalues](#mw%5F33b3ba2a-ccfc-4384-84b9-8319ef460236),[yvalues](#mw%5Fccd8392b-693f-40d9-beae-05f0b93aa758),'GroupData',[grpvalues](#mw%5Ffe77f0c1-5d89-419f-a1cf-d479ae5b850d)) uses the data in grpvalues to group the data inxvalues and yvalues.

example

scatterhistogram(___,[Name,Value](#namevaluepairarguments)) specifies additional options for the scatter plot with marginal histograms using one or more name-value pair arguments. Specify the options after all other input arguments. For a list of properties, see ScatterHistogramChart Properties.

example

scatterhistogram([parent](#mw%5Fd347fffb-ee94-46d3-8c2e-4c9bd265a596%5Fsep%5Fmw%5F58c53d12-c3c1-4fe8-b606-f6a109982a64),___) creates the scatter plot with marginal histograms in the figure, panel, or tab specified by parent.

Examples

collapse all

Create a scatter plot with marginal histograms from a table of data for medical patients.

Load the patients data set and create a table from a subset of the variables loaded into the workspace. Then, create a scatter histogram chart comparing the Height values to the Weight values.

load patients tbl = table(LastName,Age,Gender,Height,Weight); s = scatterhistogram(tbl,'Height','Weight');

Figure contains an object of type scatterhistogram.

Using the patients data set, create a scatter plot with marginal histograms and specify the table variable to use for grouping the data.

Load the patients data set and create a scatter histogram chart from the data. Compare the patients' Systolic and Diastolic values. Group the data according to the patients' smoker status by setting the 'GroupVariable' name-value pair argument to 'Smoker'.

load patients tbl = table(LastName,Diastolic,Systolic,Smoker); s = scatterhistogram(tbl,'Diastolic','Systolic','GroupVariable','Smoker');

Figure contains an object of type scatterhistogram.

Use a scatter plot with marginal histograms to visualize categorical and numeric medical data.

Load the patients data set, and convert the Smoker data to a categorical array. Then, create a scatter histogram chart that compares patients' Age values to their smoker status. The resulting scatter plot contains overlapping data points. However, the _y_-axis marginal histogram indicates that there are far more nonsmokers than smokers in the data set.

load patients Smoker = categorical(Smoker); s = scatterhistogram(Age,Smoker); xlabel('Age') ylabel('Smoker')

Figure contains an object of type scatterhistogram.

Create a scatter plot with marginal histograms using arrays of shoe data. Group the data according to shoe color, and customize properties of the scatter histogram chart.

Create arrays of data. Then, create a scatter histogram chart to visualize the data. Use custom labels along the _x_-axis and _y_-axis to specify the variable names of the first two input arguments. You can specify the title, axis labels, and legend title by setting properties of the ScatterHistogramChart object.

xvalues = [7 6 5 6.5 9 7.5 8.5 7.5 10 8]; yvalues = categorical({'onsale','regular','onsale','onsale', ... 'regular','regular','onsale','onsale','regular','regular'}); grpvalues = {'Red','Black','Blue','Red','Black','Blue','Red', ... 'Red','Blue','Black'}; s = scatterhistogram(xvalues,yvalues,'GroupData',grpvalues);

s.Title = 'Shoe Sales'; s.XLabel = 'Shoe Size'; s.YLabel = 'Price'; s.LegendTitle = 'Shoe Color';

Change the colors in the scatter histogram chart to match the group labels. Change the histogram bin widths to be the same for all groups.

s.Color = {'Red','Black','Blue'}; s.BinWidths = 1;

Figure contains an object of type scatterhistogram. The chart of type scatterhistogram has title Shoe Sales.

Create a scatter plot with marginal histograms. Specify the number of bins and line widths of the histograms, the location of the scatter plot, and the legend visibility.

Load the patients data set and create a scatter histogram chart from the data. Compare the patients' Diastolic and Systolic values, and group the data according to the patients' SelfAssessedHealthStatus values. Adjust the histograms by specifying the NumBins and LineWidth options. Place the scatter plot in the 'NorthEast' location of the figure by using the ScatterPlotLocation option. Ensure the legend is visible by specifying the LegendVisible option as 'on'.

load patients tbl = table(LastName,Diastolic,Systolic,SelfAssessedHealthStatus); s = scatterhistogram(tbl,'Diastolic','Systolic','GroupVariable','SelfAssessedHealthStatus', ... 'NumBins',4,'LineWidth',1.5,'ScatterPlotLocation','NorthEast','LegendVisible','on');

Figure contains an object of type scatterhistogram.

Create a scatter plot with marginal histograms. Group the data by using a combination of two different variables.

Load the patients data set. Combine the Smoker and Gender data to create a new variable. Create a scatter histogram chart that compares the Diastolic and Systolic values of the patients. Use the new variable SmokerGender to group the data in the scatter histogram chart.

load patients [idx,genderStatus,smokerStatus] = findgroups(string(Gender),string(Smoker)); SmokerGender = strcat(genderStatus(idx),"-",smokerStatus(idx)); s = scatterhistogram(Diastolic,Systolic,'GroupData',SmokerGender,'LegendVisible','on'); xlabel('Diastolic') ylabel('Systolic')

Figure contains an object of type scatterhistogram.

Create a scatter plot with marginal kernel density histograms.

Load the patients data set. Create a table from the Diastolic, Systolic, and Smoker variables.

load patients.mat tbl = table(Diastolic,Systolic,Smoker);

Create a scatter histogram chart that compares the Diastolic and Systolic pressure values of the patients. Use patient smoking status to group the data and display marginal kernel density plots. The plot shows that smokers have higher average systolic and diastolic blood pressure compared to nonsmokers.

s = scatterhistogram(tbl,"Diastolic","Systolic", ... GroupVariable="Smoker",HistogramDisplayStyle="smooth", ... LineStyle="-");

Figure contains an object of type scatterhistogram.

Input Arguments

collapse all

Source table, specified as a table.

You can create a table from workspace variables using the table function, or you can import data as a table using the readtable function.

The SourceTable property of the ScatterHistogramChart object stores the source table.

Table variable for _x_-axis, specified in one of these forms:

The values associated with your table variable must be of a numeric type orcategorical.

The XVariable property of the ScatterHistogramChart object stores the selected variable name.

Table variable for _y_-axis, specified in one of these forms:

The values associated with your table variable must be of a numeric type orcategorical.

The YVariable property of the ScatterHistogramChart object stores the selected variable name.

Table variable for grouping data, specified in one of these forms:

The values associated with your table variable must form a numeric vector, logical vector, categorical array, string array, or cell array of character vectors.

grpvar splits the data in xvar andyvar into unique groups. Each group has a default color and an independent histogram in each axis. In the legend, scatterhistogram displays the group names in order of their first appearance inGroupData.

Example: 'Model_Year'

Example: 2

Values appearing along the _x_-axis, specified as a numeric vector or categorical array.

The XData property of theScatterHistogramChart object stores thexvalues data.

Example: [0.5 4.3 2.4 5.6 3.4]

Example: categorical({'small','medium','small','large','medium','small'})

Values appearing along the _y_-axis, specified as a numeric vector or categorical array.

The YData property of theScatterHistogramChart object stores theyvalues data.

Example: [0.5 4.3 2.4 5.6 3.4]

Example: categorical({'small','medium','small','large','medium','small'})

Group values for the scatter plot and the corresponding marginal histograms, specified as a numeric vector, logical vector, categorical array, string array, or cell array of character vectors.

grpvalues splits the data in xvalues andyvalues into unique groups. Each group has a default color and an independent histogram in each axis. In the legend, scatterhistogram displays the group names in order of their first appearance inGroupData.

Example: [1 2 1 3 2 1 3]

Example: categorical({'blue','green','green','blue','green'})

Parent container, specified as a Figure, Panel,Tab, TiledChartLayout, or GridLayout object.

Name-Value Arguments

collapse all

Specify optional pairs of arguments asName1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: scatterhistogram(tbl,xvar,yvar,'GroupVariable',grpvar,'HistogramDisplayStyle','stairs') specifies grpvar as the grouping variable and displays stairstep plots next to the scatter plot.

Output Arguments

More About

collapse all

A standalone visualization is a chart designed for a special purpose that works independently from other charts. Unlike other charts such as plot and surf, a standalone visualization has a preconfigured axes object built into it, and some customizations are not available. A standalone visualization also has these characteristics:

Tips

Version History

Introduced in R2018b

expand all

Starting in R2024a, you can specify the HistogramDisplayStyle name-value argument as "smooth" without a Statistics and Machine Learning Toolbox™ license.