LLVM: lib/IR/AsmWriter.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
31#include "llvm/Config/llvm-config.h"
77#include
78#include
79#include
80#include
81#include
82#include
83#include
84#include
85#include
86#include
87#include
88
89using namespace llvm;
90
91
93
94
95
96
97
99
102
103
104
106 if (const auto *MAV = dyn_cast(V))
107 if (const auto *VAM = dyn_cast(MAV->getMetadata()))
108 return VAM->getValue();
109 return V;
110}
111
113 if (OM.lookup(V))
114 return;
115
116 if (const Constant *C = dyn_cast(V))
117 if (C->getNumOperands() && !isa(C))
118 for (const Value *Op : C->operands())
121
122
123
124 unsigned ID = OM.size() + 1;
125 OM[V] = ID;
126}
127
130
132 if (G.hasInitializer())
133 if (!isa(G.getInitializer()))
136 }
138 if (!isa(A.getAliasee()))
141 }
143 if (!isa(I.getResolver()))
146 }
148 for (const Use &U : F.operands())
149 if (!isa(U.get()))
151
153
154 if (F.isDeclaration())
155 continue;
156
162 for (const Value *Op : I.operands()) {
164 if ((isa(*Op) && !isa(*Op)) ||
165 isa(*Op))
167 }
169 }
170 }
171 }
172 return OM;
173}
174
175static std::vector
177
178 using Entry = std::pair<const Use *, unsigned>;
180 for (const Use &U : V->uses())
181
182 if (OM.lookup(U.getUser()))
183 List.push_back(std::make_pair(&U, List.size()));
184
185 if (List.size() < 2)
186
187 return {};
188
189
190
191
192 bool GetsReversed = !isa(V);
193 if (auto *BA = dyn_cast(V))
194 ID = OM.lookup(BA->getBasicBlock());
195 llvm::sort(List, [&](const Entry &L, const Entry &R) {
196 const Use *LU = L.first;
197 const Use *RU = R.first;
198 if (LU == RU)
199 return false;
200
201 auto LID = OM.lookup(LU->getUser());
202 auto RID = OM.lookup(RU->getUser());
203
204
205 if (LID < RID) {
206 if (GetsReversed)
207 if (RID <= ID)
208 return true;
209 return false;
210 }
211 if (RID < LID) {
212 if (GetsReversed)
213 if (LID <= ID)
214 return false;
215 return true;
216 }
217
218
219
220 if (GetsReversed)
221 if (LID <= ID)
222 return LU->getOperandNo() < RU->getOperandNo();
223 return LU->getOperandNo() > RU->getOperandNo();
224 });
225
227
228 return {};
229
230
231 std::vector Shuffle(List.size());
232 for (size_t I = 0, E = List.size(); I != E; ++I)
233 Shuffle[I] = List[I].second;
234 return Shuffle;
235}
236
240 for (const auto &Pair : OM) {
241 const Value *V = Pair.first;
242 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
243 continue;
244
245 std::vector Shuffle =
247 if (Shuffle.empty())
248 continue;
249
251 if (auto *I = dyn_cast(V))
253 if (auto *A = dyn_cast(V))
255 if (auto *BB = dyn_cast(V))
256 F = BB->getParent();
257 ULOM[F][V] = std::move(Shuffle);
258 }
259 return ULOM;
260}
261
263 if (const Argument *MA = dyn_cast(V))
264 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
265
266 if (const BasicBlock *BB = dyn_cast(V))
267 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
268
269 if (const Instruction *I = dyn_cast(V)) {
270 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
271 return M ? M->getParent() : nullptr;
272 }
273
274 if (const GlobalValue *GV = dyn_cast(V))
275 return GV->getParent();
276
277 if (const auto *MAV = dyn_cast(V)) {
278 for (const User *U : MAV->users())
279 if (isa(U))
281 return M;
282 return nullptr;
283 }
284
285 return nullptr;
286}
287
291 return M ? M->getParent() : nullptr;
292}
293
296}
297
299 switch (cc) {
300 default: Out << "cc" << cc; break;
323 Out << "aarch64_sve_vector_pcs";
324 break;
326 Out << "aarch64_sme_preservemost_from_x0";
327 break;
329 Out << "aarch64_sme_preservemost_from_x1";
330 break;
332 Out << "aarch64_sme_preservemost_from_x2";
333 break;
347 Out << "hhvmcc";
348 break;
350 Out << "hhvm_ccc";
351 break;
360 Out << "amdgpu_cs_chain";
361 break;
363 Out << "amdgpu_cs_chain_preserve";
364 break;
369 Out << "riscv_vector_cc";
370 break;
371 }
372}
373
381
383 assert(.empty() && "Cannot get empty name!");
384
385
386 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
387 if (!NeedsQuotes) {
388 for (unsigned char C : Name) {
389
390
391
392
393 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
394 C != '_') {
395 NeedsQuotes = true;
396 break;
397 }
398 }
399 }
400
401
402 if (!NeedsQuotes) {
404 return;
405 }
406
407
408
409 OS << '"';
410 printEscapedString(Name, OS);
411 OS << '"';
412}
413
414
415
416
418 switch (Prefix) {
420 break;
422 OS << '@';
423 break;
425 OS << '$';
426 break;
428 break;
430 OS << '%';
431 break;
432 }
434}
435
436
437
438
442}
443
445 Out << ", <";
446 if (isa(Ty))
447 Out << "vscale x ";
448 Out << Mask.size() << " x i32> ";
449 bool FirstElt = true;
450 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
451 Out << "zeroinitializer";
453 Out << "poison";
454 } else {
455 Out << "<";
456 for (int Elt : Mask) {
457 if (FirstElt)
458 FirstElt = false;
459 else
460 Out << ", ";
461 Out << "i32 ";
463 Out << "poison";
464 else
465 Out << Elt;
466 }
467 Out << ">";
468 }
469}
470
471namespace {
472
473class TypePrinting {
474public:
475 TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
476
477 TypePrinting(const TypePrinting &) = delete;
478 TypePrinting &operator=(const TypePrinting &) = delete;
479
480
482
483
484 std::vector<StructType *> &getNumberedTypes();
485
486 bool empty();
487
489
491
492private:
493 void incorporateTypes();
494
495
496 const Module *DeferredM;
497
499
500
502
503 std::vector<StructType *> NumberedTypes;
504};
505
506}
507
508TypeFinder &TypePrinting::getNamedTypes() {
509 incorporateTypes();
510 return NamedTypes;
511}
512
513std::vector<StructType *> &TypePrinting::getNumberedTypes() {
514 incorporateTypes();
515
516
517
518
519 if (NumberedTypes.size() == Type2Number.size())
520 return NumberedTypes;
521
522 NumberedTypes.resize(Type2Number.size());
523 for (const auto &P : Type2Number) {
524 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
525 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
526 NumberedTypes[P.second] = P.first;
527 }
528 return NumberedTypes;
529}
530
531bool TypePrinting::empty() {
532 incorporateTypes();
533 return NamedTypes.empty() && Type2Number.empty();
534}
535
536void TypePrinting::incorporateTypes() {
537 if (!DeferredM)
538 return;
539
540 NamedTypes.run(*DeferredM, false);
541 DeferredM = nullptr;
542
543
544
545 unsigned NextNumber = 0;
546
547 std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
549
550 if (STy->isLiteral())
551 continue;
552
553 if (STy->getName().empty())
554 Type2Number[STy] = NextNumber++;
555 else
556 *NextToUse++ = STy;
557 }
558
559 NamedTypes.erase(NextToUse, NamedTypes.end());
560}
561
562
563
576 OS << "metadata";
577 return;
581 OS << 'i' << cast(Ty)->getBitWidth();
582 return;
583
586 print(FTy->getReturnType(), OS);
587 OS << " (";
588 ListSeparator LS;
589 for (Type *Ty : FTy->params()) {
592 }
593 if (FTy->isVarArg())
595 OS << ')';
596 return;
597 }
599 StructType *STy = cast(Ty);
600
602 return printStructBody(STy, OS);
603
606
607 incorporateTypes();
608 const auto I = Type2Number.find(STy);
609 if (I != Type2Number.end())
611 else
612 OS << "%\"type " << STy << '\"';
613 return;
614 }
616 PointerType *PTy = cast(Ty);
617 OS << "ptr";
618 if (unsigned AddressSpace = PTy->getAddressSpace())
620 return;
621 }
623 ArrayType *ATy = cast(Ty);
624 OS << '[' << ATy->getNumElements() << " x ";
625 print(ATy->getElementType(), OS);
626 OS << ']';
627 return;
628 }
631 VectorType *PTy = cast(Ty);
633 OS << "<";
634 if (EC.isScalable())
635 OS << "vscale x ";
636 OS << EC.getKnownMinValue() << " x ";
637 print(PTy->getElementType(), OS);
638 OS << '>';
639 return;
640 }
645 return;
646 }
649 OS << "target(\"";
651 OS << "\"";
653 OS << ", ";
654 Inner->print(OS, false, true);
655 }
656 for (unsigned IntParam : TETy->int_params())
657 OS << ", " << IntParam;
658 OS << ")";
659 return;
660 }
662}
663
666 OS << "opaque";
667 return;
668 }
669
671 OS << '<';
672
674 OS << "{}";
675 } else {
676 OS << "{ ";
677 ListSeparator LS;
681 }
682
683 OS << " }";
684 }
686 OS << '>';
687}
688
690
691namespace llvm {
692
693
694
695
696
697
699public:
700
702
703private:
704
705 const Module* TheModule;
706
707
708 const Function* TheFunction = nullptr;
709 bool FunctionProcessed = false;
710 bool ShouldInitializeAllMetadata;
711
713 ProcessModuleHookFn;
715 ProcessFunctionHookFn;
716
717
719
720
722 unsigned mNext = 0;
723
724
726 unsigned fNext = 0;
727
728
730 unsigned mdnNext = 0;
731
732
734 unsigned asNext = 0;
735
736
738 unsigned ModulePathNext = 0;
739
740
742 unsigned GUIDNext = 0;
743
744
746 unsigned TypeIdNext = 0;
747
748
749
751 unsigned TypeIdCompatibleVtableNext = 0;
752
753public:
754
755
756
757
758
760 bool ShouldInitializeAllMetadata = false);
761
762
763
764
765
766
768 bool ShouldInitializeAllMetadata = false);
769
770
772
775
777
782
784
786
787
788
797
798
799
801 TheFunction = F;
802 FunctionProcessed = false;
803 }
804
806
807
808
809
811
812
814
819
820
822
827
828
830
831
834
835
836private:
837
838 void CreateModuleSlot(const GlobalValue *V);
839
840
841 void CreateMetadataSlot(const MDNode *N);
842
843
844 void CreateFunctionSlot(const Value *V);
845
846
847 void CreateAttributeSetSlot(AttributeSet AS);
848
849 inline void CreateModulePathSlot(StringRef Path);
851 void CreateTypeIdSlot(StringRef Id);
852 void CreateTypeIdCompatibleVtableSlot(StringRef Id);
853
854
855
856 void processModule();
857
858 int processIndex();
859
860
861 void processFunction();
862
863
864 void processGlobalObjectMetadata(const GlobalObject &GO);
865
866
867 void processFunctionMetadata(const Function &F);
868
869
870 void processInstructionMetadata(const Instruction &I);
871
872
873 void processDbgRecordMetadata(const DbgRecord &DVR);
874};
875
876}
877
881
883 bool ShouldInitializeAllMetadata)
884 : ShouldCreateStorage(M),
885 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
886
888
890 if (!ShouldCreateStorage)
891 return Machine;
892
893 ShouldCreateStorage = false;
894 MachineStorage =
895 std::make_unique(M, ShouldInitializeAllMetadata);
896 Machine = MachineStorage.get();
897 if (ProcessModuleHookFn)
899 if (ProcessFunctionHookFn)
901 return Machine;
902}
903
905
907 return;
908
909
910 if (this->F == &F)
911 return;
912 if (this->F)
915 this->F = &F;
916}
917
919 assert(F && "No function incorporated");
921}
922
925 Fn) {
926 ProcessModuleHookFn = Fn;
927}
928
931 Fn) {
932 ProcessFunctionHookFn = Fn;
933}
934
936 if (const Argument *FA = dyn_cast(V))
938
939 if (const Instruction *I = dyn_cast(V))
940 if (I->getParent())
941 return new SlotTracker(I->getParent()->getParent());
942
943 if (const BasicBlock *BB = dyn_cast(V))
945
946 if (const GlobalVariable *GV = dyn_cast(V))
948
949 if (const GlobalAlias *GA = dyn_cast(V))
951
952 if (const GlobalIFunc *GIF = dyn_cast(V))
953 return new SlotTracker(GIF->getParent());
954
955 if (const Function *Func = dyn_cast(V))
957
958 return nullptr;
959}
960
961#if 0
962#define ST_DEBUG(X) dbgs() << X
963#else
964#define ST_DEBUG(X)
965#endif
966
967
968
970 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
971
972
973
975 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
976 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
977
979 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
980
982 if (TheModule) {
983 processModule();
984 TheModule = nullptr;
985 }
986
987 if (TheFunction && !FunctionProcessed)
988 processFunction();
989}
990
992 if (!TheIndex)
993 return 0;
994 int NumSlots = processIndex();
995 TheIndex = nullptr;
996 return NumSlots;
997}
998
999
1000
1001void SlotTracker::processModule() {
1002 ST_DEBUG("begin processModule!\n");
1003
1004
1006 if (!Var.hasName())
1007 CreateModuleSlot(&Var);
1008 processGlobalObjectMetadata(Var);
1009 auto Attrs = Var.getAttributes();
1010 if (Attrs.hasAttributes())
1011 CreateAttributeSetSlot(Attrs);
1012 }
1013
1015 if (.hasName())
1016 CreateModuleSlot(&A);
1017 }
1018
1020 if (.hasName())
1021 CreateModuleSlot(&I);
1022 }
1023
1024
1026 for (const MDNode *N : NMD.operands())
1027 CreateMetadataSlot(N);
1028 }
1029
1030 for (const Function &F : *TheModule) {
1031 if (.hasName())
1032
1033 CreateModuleSlot(&F);
1034
1035 if (ShouldInitializeAllMetadata)
1036 processFunctionMetadata(F);
1037
1038
1039
1040 AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
1042 CreateAttributeSetSlot(FnAttrs);
1043 }
1044
1045 if (ProcessModuleHookFn)
1046 ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
1047
1048 ST_DEBUG("end processModule!\n");
1049}
1050
1051
1052void SlotTracker::processFunction() {
1053 ST_DEBUG("begin processFunction!\n");
1054 fNext = 0;
1055
1056
1057 if (!ShouldInitializeAllMetadata)
1058 processFunctionMetadata(*TheFunction);
1059
1060
1062 AE = TheFunction->arg_end(); AI != AE; ++AI)
1063 if (!AI->hasName())
1064 CreateFunctionSlot(&*AI);
1065
1066 ST_DEBUG("Inserting Instructions:\n");
1067
1068
1069 for (auto &BB : *TheFunction) {
1070 if (!BB.hasName())
1071 CreateFunctionSlot(&BB);
1072
1073 for (auto &I : BB) {
1074 if (.getType()->isVoidTy() &&
.hasName())
1075 CreateFunctionSlot(&I);
1076
1077
1078
1079 if (const auto *Call = dyn_cast(&I)) {
1080
1082 if (Attrs.hasAttributes())
1083 CreateAttributeSetSlot(Attrs);
1084 }
1085 }
1086 }
1087
1088 if (ProcessFunctionHookFn)
1089 ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1090
1091 FunctionProcessed = true;
1092
1093 ST_DEBUG("end processFunction!\n");
1094}
1095
1096
1097int SlotTracker::processIndex() {
1098 ST_DEBUG("begin processIndex!\n");
1100
1101
1102
1103
1104 std::vector ModulePaths;
1105 for (auto &[ModPath, _] : TheIndex->modulePaths())
1106 ModulePaths.push_back(ModPath);
1107 llvm::sort(ModulePaths.begin(), ModulePaths.end());
1108 for (auto &ModPath : ModulePaths)
1109 CreateModulePathSlot(ModPath);
1110
1111
1112 GUIDNext = ModulePathNext;
1113
1114 for (auto &GlobalList : *TheIndex)
1115 CreateGUIDSlot(GlobalList.first);
1116
1117
1118 TypeIdCompatibleVtableNext = GUIDNext;
1119 for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1120 CreateTypeIdCompatibleVtableSlot(TId.first);
1121
1122
1123 TypeIdNext = TypeIdCompatibleVtableNext;
1124 for (const auto &TID : TheIndex->typeIds())
1125 CreateTypeIdSlot(TID.second.first);
1126
1127 ST_DEBUG("end processIndex!\n");
1128 return TypeIdNext;
1129}
1130
1131void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1134 for (auto &MD : MDs)
1135 CreateMetadataSlot(MD.second);
1136}
1137
1138void SlotTracker::processFunctionMetadata(const Function &F) {
1139 processGlobalObjectMetadata(F);
1140 for (auto &BB : F) {
1141 for (auto &I : BB) {
1142 for (const DbgRecord &DR : I.getDbgRecordRange())
1143 processDbgRecordMetadata(DR);
1144 processInstructionMetadata(I);
1145 }
1146 }
1147}
1148
1149void SlotTracker::processDbgRecordMetadata(const DbgRecord &DR) {
1150 if (const DbgVariableRecord *DVR = dyn_cast(&DR)) {
1151
1152
1153
1154
1155 if (auto *Empty = dyn_cast(DVR->getRawLocation()))
1156 CreateMetadataSlot(Empty);
1157 CreateMetadataSlot(DVR->getRawVariable());
1158 if (DVR->isDbgAssign()) {
1159 CreateMetadataSlot(cast(DVR->getRawAssignID()));
1160 if (auto *Empty = dyn_cast(DVR->getRawAddress()))
1161 CreateMetadataSlot(Empty);
1162 }
1163 } else if (const DbgLabelRecord *DLR = dyn_cast(&DR)) {
1164 CreateMetadataSlot(DLR->getRawLabel());
1165 } else {
1167 }
1169}
1170
1171void SlotTracker::processInstructionMetadata(const Instruction &I) {
1172
1173 if (const CallInst *CI = dyn_cast(&I))
1174 if (Function *F = CI->getCalledFunction())
1175 if (F->isIntrinsic())
1176 for (auto &Op : I.operands())
1177 if (auto *V = dyn_cast_or_null(Op))
1178 if (MDNode *N = dyn_cast(V->getMetadata()))
1179 CreateMetadataSlot(N);
1180
1181
1183 I.getAllMetadata(MDs);
1184 for (auto &MD : MDs)
1185 CreateMetadataSlot(MD.second);
1186}
1187
1188
1189
1190
1192 ST_DEBUG("begin purgeFunction!\n");
1193 fMap.clear();
1194 TheFunction = nullptr;
1195 FunctionProcessed = false;
1196 ST_DEBUG("end purgeFunction!\n");
1197}
1198
1199
1201
1203
1204
1206 return MI == mMap.end() ? -1 : (int)MI->second;
1207}
1208
1211 Fn) {
1212 ProcessModuleHookFn = Fn;
1213}
1214
1217 Fn) {
1218 ProcessFunctionHookFn = Fn;
1219}
1220
1221
1223
1224
1226
1228
1229
1231 return MI == mdnMap.end() ? -1 : (int)MI->second;
1232}
1233
1234
1236 assert(!isa(V) && "Can't get a constant or global slot with this!");
1237
1238
1240
1242 return FI == fMap.end() ? -1 : (int)FI->second;
1243}
1244
1246
1248
1249
1251 return AI == asMap.end() ? -1 : (int)AI->second;
1252}
1253
1255
1257
1258
1259 auto I = ModulePathMap.find(Path);
1260 return I == ModulePathMap.end() ? -1 : (int)I->second;
1261}
1262
1264
1266
1267
1269 return I == GUIDMap.end() ? -1 : (int)I->second;
1270}
1271
1273
1275
1276
1277 auto I = TypeIdMap.find(Id);
1278 return I == TypeIdMap.end() ? -1 : (int)I->second;
1279}
1280
1282
1284
1285
1286 auto I = TypeIdCompatibleVtableMap.find(Id);
1287 return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)I->second;
1288}
1289
1290
1291void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1292 assert(V && "Can't insert a null Value into SlotTracker!");
1293 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1294 assert(!V->hasName() && "Doesn't need a slot!");
1295
1296 unsigned DestSlot = mNext++;
1297 mMap[V] = DestSlot;
1298
1299 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1300 DestSlot << " [");
1301
1302 ST_DEBUG((isa(V) ? 'G' :
1303 (isa(V) ? 'F' :
1304 (isa(V) ? 'A' :
1305 (isa(V) ? 'I' : 'o')))) << "]\n");
1306}
1307
1308
1309void SlotTracker::CreateFunctionSlot(const Value *V) {
1310 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1311
1312 unsigned DestSlot = fNext++;
1313 fMap[V] = DestSlot;
1314
1315
1316 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1317 DestSlot << " [o]\n");
1318}
1319
1320
1321void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1322 assert(N && "Can't insert a null Value into SlotTracker!");
1323
1324
1325 if (isa(N))
1326 return;
1327
1328 unsigned DestSlot = mdnNext;
1329 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1330 return;
1331 ++mdnNext;
1332
1333
1334 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1335 if (const MDNode *Op = dyn_cast_or_null(N->getOperand(i)))
1336 CreateMetadataSlot(Op);
1337}
1338
1339void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1341
1342 if (asMap.try_emplace(AS, asNext).second)
1343 ++asNext;
1344}
1345
1346
1347void SlotTracker::CreateModulePathSlot(StringRef Path) {
1348 ModulePathMap[Path] = ModulePathNext++;
1349}
1350
1351
1353 GUIDMap[GUID] = GUIDNext++;
1354}
1355
1356
1357void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1358 TypeIdMap[Id] = TypeIdNext++;
1359}
1360
1361
1362void SlotTracker::CreateTypeIdCompatibleVtableSlot(StringRef Id) {
1363 TypeIdCompatibleVtableMap[Id] = TypeIdCompatibleVtableNext++;
1364}
1365
1366namespace {
1367
1368struct AsmWriterContext {
1369 TypePrinting *TypePrinter = nullptr;
1371 const Module *Context = nullptr;
1372
1373 AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1374 : TypePrinter(TP), Machine(ST), Context(M) {}
1375
1376 static AsmWriterContext &getEmpty() {
1377 static AsmWriterContext EmptyCtx(nullptr, nullptr);
1378 return EmptyCtx;
1379 }
1380
1381
1382
1383 virtual void onWriteMetadataAsOperand(const Metadata *) {}
1384
1385 virtual ~AsmWriterContext() = default;
1386};
1387}
1388
1389
1390
1391
1392
1394 AsmWriterContext &WriterCtx);
1395
1397 AsmWriterContext &WriterCtx,
1398 bool FromValue = false);
1399
1401 if (const FPMathOperator *FPO = dyn_cast(U))
1402 Out << FPO->getFastMathFlags();
1403
1405 dyn_cast(U)) {
1406 if (OBO->hasNoUnsignedWrap())
1407 Out << " nuw";
1408 if (OBO->hasNoSignedWrap())
1409 Out << " nsw";
1411 dyn_cast(U)) {
1412 if (Div->isExact())
1413 Out << " exact";
1415 dyn_cast(U)) {
1416 if (PDI->isDisjoint())
1417 Out << " disjoint";
1418 } else if (const GEPOperator *GEP = dyn_cast(U)) {
1419 if (GEP->isInBounds())
1420 Out << " inbounds";
1421 else if (GEP->hasNoUnsignedSignedWrap())
1422 Out << " nusw";
1423 if (GEP->hasNoUnsignedWrap())
1424 Out << " nuw";
1425 if (auto InRange = GEP->getInRange()) {
1426 Out << " inrange(" << InRange->getLower() << ", " << InRange->getUpper()
1427 << ")";
1428 }
1429 } else if (const auto *NNI = dyn_cast(U)) {
1430 if (NNI->hasNonNeg())
1431 Out << " nneg";
1432 } else if (const auto *TI = dyn_cast(U)) {
1433 if (TI->hasNoUnsignedWrap())
1434 Out << " nuw";
1435 if (TI->hasNoSignedWrap())
1436 Out << " nsw";
1437 } else if (const auto *ICmp = dyn_cast(U)) {
1438 if (ICmp->hasSameSign())
1439 Out << " samesign";
1440 }
1441}
1442
1446
1447
1448
1449
1450
1454 bool isNaN = APF.isNaN();
1455
1456 if (!isInf && !isNaN) {
1459 APF.toString(StrVal, 6, 0, false);
1460
1461
1462
1463
1465 ((StrVal[0] == '-' || StrVal[0] == '+') && isDigit(StrVal[1]))) &&
1466 "[-+]?[0-9] regex does not match!");
1467
1469 Out << StrVal;
1470 return;
1471 }
1472 }
1473
1474
1475
1476
1477
1478 static_assert(sizeof(double) == sizeof(uint64_t),
1479 "assuming that double is 64 bits!");
1481
1482
1483
1484 if (!isDouble) {
1485
1486
1490 if (IsSNAN) {
1492 apf =
1494 }
1495 }
1496
1498 return;
1499 }
1500
1501
1502
1503
1504 Out << "0x";
1507 Out << 'K';
1509 true);
1511 true);
1513 Out << 'L';
1515 true);
1517 true);
1519 Out << 'M';
1521 true);
1523 true);
1525 Out << 'H';
1527 true);
1529 Out << 'R';
1531 true);
1532 } else
1534}
1535
1537 AsmWriterContext &WriterCtx) {
1538 if (const ConstantInt *CI = dyn_cast(CV)) {
1539 Type *Ty = CI->getType();
1540
1542 Out << "splat (";
1543 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1544 Out << " ";
1545 }
1546
1548 Out << (CI->getZExtValue() ? "true" : "false");
1549 else
1550 Out << CI->getValue();
1551
1553 Out << ")";
1554
1555 return;
1556 }
1557
1558 if (const ConstantFP *CFP = dyn_cast(CV)) {
1559 Type *Ty = CFP->getType();
1560
1562 Out << "splat (";
1563 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1564 Out << " ";
1565 }
1566
1568
1570 Out << ")";
1571
1572 return;
1573 }
1574
1575 if (isa(CV) || isa(CV)) {
1576 Out << "zeroinitializer";
1577 return;
1578 }
1579
1580 if (const BlockAddress *BA = dyn_cast(CV)) {
1581 Out << "blockaddress(";
1583 Out << ", ";
1585 Out << ")";
1586 return;
1587 }
1588
1589 if (const auto *Equiv = dyn_cast(CV)) {
1590 Out << "dso_local_equivalent ";
1592 return;
1593 }
1594
1595 if (const auto *NC = dyn_cast(CV)) {
1596 Out << "no_cfi ";
1598 return;
1599 }
1600
1601 if (const ConstantPtrAuth *CPA = dyn_cast(CV)) {
1602 Out << "ptrauth (";
1603
1604
1605 unsigned NumOpsToWrite = 2;
1606 if (!CPA->getOperand(2)->isNullValue())
1607 NumOpsToWrite = 3;
1608 if (!CPA->getOperand(3)->isNullValue())
1609 NumOpsToWrite = 4;
1610
1611 ListSeparator LS;
1612 for (unsigned i = 0, e = NumOpsToWrite; i != e; ++i) {
1613 Out << LS;
1614 WriterCtx.TypePrinter->print(CPA->getOperand(i)->getType(), Out);
1615 Out << ' ';
1617 }
1618 Out << ')';
1619 return;
1620 }
1621
1622 if (const ConstantArray *CA = dyn_cast(CV)) {
1623 Type *ETy = CA->getType()->getElementType();
1624 Out << '[';
1625 WriterCtx.TypePrinter->print(ETy, Out);
1626 Out << ' ';
1628 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1629 Out << ", ";
1630 WriterCtx.TypePrinter->print(ETy, Out);
1631 Out << ' ';
1633 }
1634 Out << ']';
1635 return;
1636 }
1637
1638 if (const ConstantDataArray *CA = dyn_cast(CV)) {
1639
1640
1641 if (CA->isString()) {
1642 Out << "c\"";
1643 printEscapedString(CA->getAsString(), Out);
1644 Out << '"';
1645 return;
1646 }
1647
1648 Type *ETy = CA->getType()->getElementType();
1649 Out << '[';
1650 WriterCtx.TypePrinter->print(ETy, Out);
1651 Out << ' ';
1653 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1654 Out << ", ";
1655 WriterCtx.TypePrinter->print(ETy, Out);
1656 Out << ' ';
1658 }
1659 Out << ']';
1660 return;
1661 }
1662
1663 if (const ConstantStruct *CS = dyn_cast(CV)) {
1664 if (CS->getType()->isPacked())
1665 Out << '<';
1666 Out << '{';
1667 unsigned N = CS->getNumOperands();
1668 if (N) {
1669 Out << ' ';
1670 WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1671 Out << ' ';
1672
1674
1675 for (unsigned i = 1; i < N; i++) {
1676 Out << ", ";
1677 WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1678 Out << ' ';
1679
1681 }
1682 Out << ' ';
1683 }
1684
1685 Out << '}';
1686 if (CS->getType()->isPacked())
1687 Out << '>';
1688 return;
1689 }
1690
1691 if (isa(CV) || isa(CV)) {
1692 auto *CVVTy = cast(CV->getType());
1693 Type *ETy = CVVTy->getElementType();
1694
1695
1696
1697
1698
1699
1701 if (isa(SplatVal) || isa(SplatVal)) {
1702 Out << "splat (";
1703 WriterCtx.TypePrinter->print(ETy, Out);
1704 Out << ' ';
1706 Out << ')';
1707 return;
1708 }
1709 }
1710
1711 Out << '<';
1712 WriterCtx.TypePrinter->print(ETy, Out);
1713 Out << ' ';
1715 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1716 Out << ", ";
1717 WriterCtx.TypePrinter->print(ETy, Out);
1718 Out << ' ';
1720 }
1721 Out << '>';
1722 return;
1723 }
1724
1725 if (isa(CV)) {
1726 Out << "null";
1727 return;
1728 }
1729
1730 if (isa(CV)) {
1731 Out << "none";
1732 return;
1733 }
1734
1735 if (isa(CV)) {
1736 Out << "poison";
1737 return;
1738 }
1739
1740 if (isa(CV)) {
1741 Out << "undef";
1742 return;
1743 }
1744
1745 if (const ConstantExpr *CE = dyn_cast(CV)) {
1746
1747
1748
1749
1750
1751 if (CE->getOpcode() == Instruction::ShuffleVector) {
1752 if (auto *SplatVal = CE->getSplatValue()) {
1753 if (isa(SplatVal) || isa(SplatVal)) {
1754 Out << "splat (";
1755 WriterCtx.TypePrinter->print(SplatVal->getType(), Out);
1756 Out << ' ';
1758 Out << ')';
1759 return;
1760 }
1761 }
1762 }
1763
1764 Out << CE->getOpcodeName();
1766 Out << " (";
1767
1768 if (const GEPOperator *GEP = dyn_cast(CE)) {
1769 WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1770 Out << ", ";
1771 }
1772
1774 ++OI) {
1775 WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1776 Out << ' ';
1778 if (OI+1 != CE->op_end())
1779 Out << ", ";
1780 }
1781
1782 if (CE->isCast()) {
1783 Out << " to ";
1784 WriterCtx.TypePrinter->print(CE->getType(), Out);
1785 }
1786
1787 if (CE->getOpcode() == Instruction::ShuffleVector)
1789
1790 Out << ')';
1791 return;
1792 }
1793
1794 Out << "";
1795}
1796
1798 AsmWriterContext &WriterCtx) {
1799 Out << "!{";
1800 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1802 if (!MD)
1803 Out << "null";
1804 else if (auto *MDV = dyn_cast(MD)) {
1805 Value *V = MDV->getValue();
1806 WriterCtx.TypePrinter->print(V->getType(), Out);
1807 Out << ' ';
1809 } else {
1811 WriterCtx.onWriteMetadataAsOperand(MD);
1812 }
1813 if (mi + 1 != me)
1814 Out << ", ";
1815 }
1816
1817 Out << "}";
1818}
1819
1820namespace {
1821
1822struct FieldSeparator {
1823 bool Skip = true;
1824 const char *Sep;
1825
1826 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1827};
1828
1830 if (FS.Skip) {
1831 FS.Skip = false;
1832 return OS;
1833 }
1835}
1836
1837struct MDFieldPrinter {
1839 FieldSeparator FS;
1840 AsmWriterContext &WriterCtx;
1841
1842 explicit MDFieldPrinter(raw_ostream &Out)
1843 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1844 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1845 : Out(Out), WriterCtx(Ctx) {}
1846
1847 void printTag(const DINode *N);
1848 void printMacinfoType(const DIMacroNode *N);
1851 bool ShouldSkipEmpty = true);
1853 bool ShouldSkipNull = true);
1854 template
1855 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1857 bool ShouldSkipZero);
1859 std::optional Default = std::nullopt);
1862 template <class IntTy, class Stringifier>
1864 bool ShouldSkipZero = true);
1868};
1869
1870}
1871
1872void MDFieldPrinter::printTag(const DINode *N) {
1873 Out << FS << "tag: ";
1875 if (.empty())
1876 Out << Tag;
1877 else
1878 Out << N->getTag();
1879}
1880
1881void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1882 Out << FS << "type: ";
1884 if (.empty())
1885 Out << Type;
1886 else
1887 Out << N->getMacinfoType();
1888}
1889
1890void MDFieldPrinter::printChecksum(
1893 printString("checksum", Checksum.Value, false);
1894}
1895
1897 bool ShouldSkipEmpty) {
1898 if (ShouldSkipEmpty && Value.empty())
1899 return;
1900
1901 Out << FS << Name << ": \"";
1902 printEscapedString(Value, Out);
1903 Out << "\"";
1904}
1905
1907 AsmWriterContext &WriterCtx) {
1908 if (!MD) {
1909 Out << "null";
1910 return;
1911 }
1913 WriterCtx.onWriteMetadataAsOperand(MD);
1914}
1915
1917 bool ShouldSkipNull) {
1918 if (ShouldSkipNull && !MD)
1919 return;
1920
1921 Out << FS << Name << ": ";
1923}
1924
1925template
1926void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1927 if (ShouldSkipZero && )
1928 return;
1929
1930 Out << FS << Name << ": " << Int;
1931}
1932
1934 bool IsUnsigned, bool ShouldSkipZero) {
1935 if (ShouldSkipZero && Int.isZero())
1936 return;
1937
1938 Out << FS << Name << ": ";
1939 Int.print(Out, !IsUnsigned);
1940}
1941
1943 std::optional Default) {
1945 return;
1946 Out << FS << Name << ": " << (Value ? "true" : "false");
1947}
1948
1950 if (!Flags)
1951 return;
1952
1953 Out << FS << Name << ": ";
1954
1957
1958 FieldSeparator FlagsFS(" | ");
1959 for (auto F : SplitFlags) {
1961 assert(!StringF.empty() && "Expected valid flag");
1962 Out << FlagsFS << StringF;
1963 }
1964 if (Extra || SplitFlags.empty())
1965 Out << FlagsFS << Extra;
1966}
1967
1968void MDFieldPrinter::printDISPFlags(StringRef Name,
1970
1971
1972 Out << FS << Name << ": ";
1973
1974 if (!Flags) {
1975 Out << 0;
1976 return;
1977 }
1978
1981
1982 FieldSeparator FlagsFS(" | ");
1983 for (auto F : SplitFlags) {
1985 assert(!StringF.empty() && "Expected valid flag");
1986 Out << FlagsFS << StringF;
1987 }
1988 if (Extra || SplitFlags.empty())
1989 Out << FlagsFS << Extra;
1990}
1991
1992void MDFieldPrinter::printEmissionKind(StringRef Name,
1995}
1996
1997void MDFieldPrinter::printNameTableKind(StringRef Name,
2000 return;
2002}
2003
2004template <class IntTy, class Stringifier>
2006 Stringifier toString, bool ShouldSkipZero) {
2008 return;
2009
2010 Out << FS << Name << ": ";
2012 if (!S.empty())
2013 Out << S;
2014 else
2016}
2017
2019 AsmWriterContext &WriterCtx) {
2020 Out << "!GenericDINode(";
2021 MDFieldPrinter Printer(Out, WriterCtx);
2023 Printer.printString("header", N->getHeader());
2024 if (N->getNumDwarfOperands()) {
2025 Out << Printer.FS << "operands: {";
2026 FieldSeparator IFS;
2027 for (auto &I : N->dwarf_operands()) {
2028 Out << IFS;
2030 }
2031 Out << "}";
2032 }
2033 Out << ")";
2034}
2035
2037 AsmWriterContext &WriterCtx) {
2038 Out << "!DILocation(";
2039 MDFieldPrinter Printer(Out, WriterCtx);
2040
2041 Printer.printInt("line", DL->getLine(), false);
2042 Printer.printInt("column", DL->getColumn());
2043 Printer.printMetadata("scope", DL->getRawScope(), false);
2044 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
2045 Printer.printBool("isImplicitCode", DL->isImplicitCode(),
2046 false);
2047 Out << ")";
2048}
2049
2051 AsmWriterContext &WriterCtx) {
2052 Out << "!DIAssignID()";
2053 MDFieldPrinter Printer(Out, WriterCtx);
2054}
2055
2057 AsmWriterContext &WriterCtx) {
2058 Out << "!DISubrange(";
2059 MDFieldPrinter Printer(Out, WriterCtx);
2060
2061 auto *Count = N->getRawCountNode();
2062 if (auto *CE = dyn_cast_or_null(Count)) {
2063 auto *CV = cast(CE->getValue());
2064 Printer.printInt("count", CV->getSExtValue(),
2065 false);
2066 } else
2067 Printer.printMetadata("count", Count, true);
2068
2069
2070
2071 auto *LBound = N->getRawLowerBound();
2072 if (auto *LE = dyn_cast_or_null(LBound)) {
2073 auto *LV = cast(LE->getValue());
2074 Printer.printInt("lowerBound", LV->getSExtValue(),
2075 false);
2076 } else
2077 Printer.printMetadata("lowerBound", LBound, true);
2078
2079 auto *UBound = N->getRawUpperBound();
2080 if (auto *UE = dyn_cast_or_null(UBound)) {
2081 auto *UV = cast(UE->getValue());
2082 Printer.printInt("upperBound", UV->getSExtValue(),
2083 false);
2084 } else
2085 Printer.printMetadata("upperBound", UBound, true);
2086
2087 auto *Stride = N->getRawStride();
2088 if (auto *SE = dyn_cast_or_null(Stride)) {
2089 auto *SV = cast(SE->getValue());
2090 Printer.printInt("stride", SV->getSExtValue(), false);
2091 } else
2092 Printer.printMetadata("stride", Stride, true);
2093
2094 Out << ")";
2095}
2096
2098 AsmWriterContext &WriterCtx) {
2099 Out << "!DIGenericSubrange(";
2100 MDFieldPrinter Printer(Out, WriterCtx);
2101
2102 auto IsConstant = [&](Metadata *Bound) -> bool {
2103 if (auto *BE = dyn_cast_or_null(Bound)) {
2104 return BE->isConstant() &&
2106 *BE->isConstant();
2107 }
2108 return false;
2109 };
2110
2111 auto GetConstant = [&](Metadata *Bound) -> int64_t {
2112 assert(IsConstant(Bound) && "Expected constant");
2113 auto *BE = dyn_cast_or_null(Bound);
2114 return static_cast<int64_t>(BE->getElement(1));
2115 };
2116
2117 auto *Count = N->getRawCountNode();
2118 if (IsConstant(Count))
2119 Printer.printInt("count", GetConstant(Count),
2120 false);
2121 else
2122 Printer.printMetadata("count", Count, true);
2123
2124 auto *LBound = N->getRawLowerBound();
2125 if (IsConstant(LBound))
2126 Printer.printInt("lowerBound", GetConstant(LBound),
2127 false);
2128 else
2129 Printer.printMetadata("lowerBound", LBound, true);
2130
2131 auto *UBound = N->getRawUpperBound();
2132 if (IsConstant(UBound))
2133 Printer.printInt("upperBound", GetConstant(UBound),
2134 false);
2135 else
2136 Printer.printMetadata("upperBound", UBound, true);
2137
2138 auto *Stride = N->getRawStride();
2139 if (IsConstant(Stride))
2140 Printer.printInt("stride", GetConstant(Stride),
2141 false);
2142 else
2143 Printer.printMetadata("stride", Stride, true);
2144
2145 Out << ")";
2146}
2147
2149 AsmWriterContext &) {
2150 Out << "!DIEnumerator(";
2151 MDFieldPrinter Printer(Out);
2152 Printer.printString("name", N->getName(), false);
2153 Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
2154 false);
2155 if (N->isUnsigned())
2156 Printer.printBool("isUnsigned", true);
2157 Out << ")";
2158}
2159
2161 AsmWriterContext &) {
2162 Out << "!DIBasicType(";
2163 MDFieldPrinter Printer(Out);
2164 if (N->getTag() != dwarf::DW_TAG_base_type)
2166 Printer.printString("name", N->getName());
2167 Printer.printInt("size", N->getSizeInBits());
2168 Printer.printInt("align", N->getAlignInBits());
2169 Printer.printDwarfEnum("encoding", N->getEncoding(),
2171 Printer.printInt("num_extra_inhabitants", N->getNumExtraInhabitants());
2172 Printer.printDIFlags("flags", N->getFlags());
2173 Out << ")";
2174}
2175
2177 AsmWriterContext &WriterCtx) {
2178 Out << "!DIStringType(";
2179 MDFieldPrinter Printer(Out, WriterCtx);
2180 if (N->getTag() != dwarf::DW_TAG_string_type)
2182 Printer.printString("name", N->getName());
2183 Printer.printMetadata("stringLength", N->getRawStringLength());
2184 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2185 Printer.printMetadata("stringLocationExpression",
2186 N->getRawStringLocationExp());
2187 Printer.printInt("size", N->getSizeInBits());
2188 Printer.printInt("align", N->getAlignInBits());
2189 Printer.printDwarfEnum("encoding", N->getEncoding(),
2191 Out << ")";
2192}
2193
2195 AsmWriterContext &WriterCtx) {
2196 Out << "!DIDerivedType(";
2197 MDFieldPrinter Printer(Out, WriterCtx);
2199 Printer.printString("name", N->getName());
2200 Printer.printMetadata("scope", N->getRawScope());
2201 Printer.printMetadata("file", N->getRawFile());
2202 Printer.printInt("line", N->getLine());
2203 Printer.printMetadata("baseType", N->getRawBaseType(),
2204 false);
2205 Printer.printInt("size", N->getSizeInBits());
2206 Printer.printInt("align", N->getAlignInBits());
2207 Printer.printInt("offset", N->getOffsetInBits());
2208 Printer.printDIFlags("flags", N->getFlags());
2209 Printer.printMetadata("extraData", N->getRawExtraData());
2210 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2211 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2212 false);
2213 Printer.printMetadata("annotations", N->getRawAnnotations());
2214 if (auto PtrAuthData = N->getPtrAuthData()) {
2215 Printer.printInt("ptrAuthKey", PtrAuthData->key());
2216 Printer.printBool("ptrAuthIsAddressDiscriminated",
2217 PtrAuthData->isAddressDiscriminated());
2218 Printer.printInt("ptrAuthExtraDiscriminator",
2219 PtrAuthData->extraDiscriminator());
2220 Printer.printBool("ptrAuthIsaPointer", PtrAuthData->isaPointer());
2221 Printer.printBool("ptrAuthAuthenticatesNullValues",
2222 PtrAuthData->authenticatesNullValues());
2223 }
2224 Out << ")";
2225}
2226
2228 AsmWriterContext &WriterCtx) {
2229 Out << "!DICompositeType(";
2230 MDFieldPrinter Printer(Out, WriterCtx);
2232 Printer.printString("name", N->getName());
2233 Printer.printMetadata("scope", N->getRawScope());
2234 Printer.printMetadata("file", N->getRawFile());
2235 Printer.printInt("line", N->getLine());
2236 Printer.printMetadata("baseType", N->getRawBaseType());
2237 Printer.printInt("size", N->getSizeInBits());
2238 Printer.printInt("align", N->getAlignInBits());
2239 Printer.printInt("offset", N->getOffsetInBits());
2240 Printer.printInt("num_extra_inhabitants", N->getNumExtraInhabitants());
2241 Printer.printDIFlags("flags", N->getFlags());
2242 Printer.printMetadata("elements", N->getRawElements());
2243 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2245 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2246 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2247 Printer.printString("identifier", N->getIdentifier());
2248 Printer.printMetadata("discriminator", N->getRawDiscriminator());
2249 Printer.printMetadata("dataLocation", N->getRawDataLocation());
2250 Printer.printMetadata("associated", N->getRawAssociated());
2251 Printer.printMetadata("allocated", N->getRawAllocated());
2252 if (auto *RankConst = N->getRankConst())
2253 Printer.printInt("rank", RankConst->getSExtValue(),
2254 false);
2255 else
2256 Printer.printMetadata("rank", N->getRawRank(), true);
2257 Printer.printMetadata("annotations", N->getRawAnnotations());
2258 if (auto *Specification = N->getRawSpecification())
2259 Printer.printMetadata("specification", Specification);
2260 Out << ")";
2261}
2262
2264 AsmWriterContext &WriterCtx) {
2265 Out << "!DISubroutineType(";
2266 MDFieldPrinter Printer(Out, WriterCtx);
2267 Printer.printDIFlags("flags", N->getFlags());
2269 Printer.printMetadata("types", N->getRawTypeArray(),
2270 false);
2271 Out << ")";
2272}
2273
2275 Out << "!DIFile(";
2276 MDFieldPrinter Printer(Out);
2277 Printer.printString("filename", N->getFilename(),
2278 false);
2279 Printer.printString("directory", N->getDirectory(),
2280 false);
2281
2282 if (N->getChecksum())
2283 Printer.printChecksum(*N->getChecksum());
2284 Printer.printString("source", N->getSource().value_or(StringRef()),
2285 true);
2286 Out << ")";
2287}
2288
2290 AsmWriterContext &WriterCtx) {
2291 Out << "!DICompileUnit(";
2292 MDFieldPrinter Printer(Out, WriterCtx);
2293 Printer.printDwarfEnum("language", N->getSourceLanguage(),
2295 Printer.printMetadata("file", N->getRawFile(), false);
2296 Printer.printString("producer", N->getProducer());
2297 Printer.printBool("isOptimized", N->isOptimized());
2298 Printer.printString("flags", N->getFlags());
2299 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2300 false);
2301 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2302 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2303 Printer.printMetadata("enums", N->getRawEnumTypes());
2304 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2305 Printer.printMetadata("globals", N->getRawGlobalVariables());
2306 Printer.printMetadata("imports", N->getRawImportedEntities());
2307 Printer.printMetadata("macros", N->getRawMacros());
2308 Printer.printInt("dwoId", N->getDWOId());
2309 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2310 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2311 false);
2312 Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2313 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2314 Printer.printString("sysroot", N->getSysRoot());
2315 Printer.printString("sdk", N->getSDK());
2316 Out << ")";
2317}
2318
2320 AsmWriterContext &WriterCtx) {
2321 Out << "!DISubprogram(";
2322 MDFieldPrinter Printer(Out, WriterCtx);
2323 Printer.printString("name", N->getName());
2324 Printer.printString("linkageName", N->getLinkageName());
2325 Printer.printMetadata("scope", N->getRawScope(), false);
2326 Printer.printMetadata("file", N->getRawFile());
2327 Printer.printInt("line", N->getLine());
2328 Printer.printMetadata("type", N->getRawType());
2329 Printer.printInt("scopeLine", N->getScopeLine());
2330 Printer.printMetadata("containingType", N->getRawContainingType());
2331 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2332 N->getVirtualIndex() != 0)
2333 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2334 Printer.printInt("thisAdjustment", N->getThisAdjustment());
2335 Printer.printDIFlags("flags", N->getFlags());
2336 Printer.printDISPFlags("spFlags", N->getSPFlags());
2337 Printer.printMetadata("unit", N->getRawUnit());
2338 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2339 Printer.printMetadata("declaration", N->getRawDeclaration());
2340 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2341 Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2342 Printer.printMetadata("annotations", N->getRawAnnotations());
2343 Printer.printString("targetFuncName", N->getTargetFuncName());
2344 Out << ")";
2345}
2346
2348 AsmWriterContext &WriterCtx) {
2349 Out << "!DILexicalBlock(";
2350 MDFieldPrinter Printer(Out, WriterCtx);
2351 Printer.printMetadata("scope", N->getRawScope(), false);
2352 Printer.printMetadata("file", N->getRawFile());
2353 Printer.printInt("line", N->getLine());
2354 Printer.printInt("column", N->getColumn());
2355 Out << ")";
2356}
2357
2360 AsmWriterContext &WriterCtx) {
2361 Out << "!DILexicalBlockFile(";
2362 MDFieldPrinter Printer(Out, WriterCtx);
2363 Printer.printMetadata("scope", N->getRawScope(), false);
2364 Printer.printMetadata("file", N->getRawFile());
2365 Printer.printInt("discriminator", N->getDiscriminator(),
2366 false);
2367 Out << ")";
2368}
2369
2371 AsmWriterContext &WriterCtx) {
2372 Out << "!DINamespace(";
2373 MDFieldPrinter Printer(Out, WriterCtx);
2374 Printer.printString("name", N->getName());
2375 Printer.printMetadata("scope", N->getRawScope(), false);
2376 Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2377 Out << ")";
2378}
2379
2381 AsmWriterContext &WriterCtx) {
2382 Out << "!DICommonBlock(";
2383 MDFieldPrinter Printer(Out, WriterCtx);
2384 Printer.printMetadata("scope", N->getRawScope(), false);
2385 Printer.printMetadata("declaration", N->getRawDecl(), false);
2386 Printer.printString("name", N->getName());
2387 Printer.printMetadata("file", N->getRawFile());
2388 Printer.printInt("line", N->getLineNo());
2389 Out << ")";
2390}
2391
2393 AsmWriterContext &WriterCtx) {
2394 Out << "!DIMacro(";
2395 MDFieldPrinter Printer(Out, WriterCtx);
2396 Printer.printMacinfoType(N);
2397 Printer.printInt("line", N->getLine());
2398 Printer.printString("name", N->getName());
2399 Printer.printString("value", N->getValue());
2400 Out << ")";
2401}
2402
2404 AsmWriterContext &WriterCtx) {
2405 Out << "!DIMacroFile(";
2406 MDFieldPrinter Printer(Out, WriterCtx);
2407 Printer.printInt("line", N->getLine());
2408 Printer.printMetadata("file", N->getRawFile(), false);
2409 Printer.printMetadata("nodes", N->getRawElements());
2410 Out << ")";
2411}
2412
2414 AsmWriterContext &WriterCtx) {
2415 Out << "!DIModule(";
2416 MDFieldPrinter Printer(Out, WriterCtx);
2417 Printer.printMetadata("scope", N->getRawScope(), false);
2418 Printer.printString("name", N->getName());
2419 Printer.printString("configMacros", N->getConfigurationMacros());
2420 Printer.printString("includePath", N->getIncludePath());
2421 Printer.printString("apinotes", N->getAPINotesFile());
2422 Printer.printMetadata("file", N->getRawFile());
2423 Printer.printInt("line", N->getLineNo());
2424 Printer.printBool("isDecl", N->getIsDecl(), false);
2425 Out << ")";
2426}
2427
2430 AsmWriterContext &WriterCtx) {
2431 Out << "!DITemplateTypeParameter(";
2432 MDFieldPrinter Printer(Out, WriterCtx);
2433 Printer.printString("name", N->getName());
2434 Printer.printMetadata("type", N->getRawType(), false);
2435 Printer.printBool("defaulted", N->isDefault(), false);
2436 Out << ")";
2437}
2438
2441 AsmWriterContext &WriterCtx) {
2442 Out << "!DITemplateValueParameter(";
2443 MDFieldPrinter Printer(Out, WriterCtx);
2444 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2446 Printer.printString("name", N->getName());
2447 Printer.printMetadata("type", N->getRawType());
2448 Printer.printBool("defaulted", N->isDefault(), false);
2449 Printer.printMetadata("value", N->getValue(), false);
2450 Out << ")";
2451}
2452
2454 AsmWriterContext &WriterCtx) {
2455 Out << "!DIGlobalVariable(";
2456 MDFieldPrinter Printer(Out, WriterCtx);
2457 Printer.printString("name", N->getName());
2458 Printer.printString("linkageName", N->getLinkageName());
2459 Printer.printMetadata("scope", N->getRawScope(), false);
2460 Printer.printMetadata("file", N->getRawFile());
2461 Printer.printInt("line", N->getLine());
2462 Printer.printMetadata("type", N->getRawType());
2463 Printer.printBool("isLocal", N->isLocalToUnit());
2464 Printer.printBool("isDefinition", N->isDefinition());
2465 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2466 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2467 Printer.printInt("align", N->getAlignInBits());
2468 Printer.printMetadata("annotations", N->getRawAnnotations());
2469 Out << ")";
2470}
2471
2473 AsmWriterContext &WriterCtx) {
2474 Out << "!DILocalVariable(";
2475 MDFieldPrinter Printer(Out, WriterCtx);
2476 Printer.printString("name", N->getName());
2477 Printer.printInt("arg", N->getArg());
2478 Printer.printMetadata("scope", N->getRawScope(), false);
2479 Printer.printMetadata("file", N->getRawFile());
2480 Printer.printInt("line", N->getLine());
2481 Printer.printMetadata("type", N->getRawType());
2482 Printer.printDIFlags("flags", N->getFlags());
2483 Printer.printInt("align", N->getAlignInBits());
2484 Printer.printMetadata("annotations", N->getRawAnnotations());
2485 Out << ")";
2486}
2487
2489 AsmWriterContext &WriterCtx) {
2490 Out << "!DILabel(";
2491 MDFieldPrinter Printer(Out, WriterCtx);
2492 Printer.printMetadata("scope", N->getRawScope(), false);
2493 Printer.printString("name", N->getName());
2494 Printer.printMetadata("file", N->getRawFile());
2495 Printer.printInt("line", N->getLine());
2496 Out << ")";
2497}
2498
2500 AsmWriterContext &WriterCtx) {
2501 Out << "!DIExpression(";
2502 FieldSeparator FS;
2503 if (N->isValid()) {
2506 assert(!OpStr.empty() && "Expected valid opcode");
2507
2508 Out << FS << OpStr;
2510 Out << FS << Op.getArg(0);
2512 } else {
2513 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2514 Out << FS << Op.getArg(A);
2515 }
2516 }
2517 } else {
2518 for (const auto &I : N->getElements())
2519 Out << FS << I;
2520 }
2521 Out << ")";
2522}
2523
2525 AsmWriterContext &WriterCtx,
2526 bool FromValue = false) {
2528 "Unexpected DIArgList metadata outside of value argument");
2529 Out << "!DIArgList(";
2530 FieldSeparator FS;
2531 MDFieldPrinter Printer(Out, WriterCtx);
2532 for (Metadata *Arg : N->getArgs()) {
2533 Out << FS;
2535 }
2536 Out << ")";
2537}
2538
2541 AsmWriterContext &WriterCtx) {
2542 Out << "!DIGlobalVariableExpression(";
2543 MDFieldPrinter Printer(Out, WriterCtx);
2544 Printer.printMetadata("var", N->getVariable());
2545 Printer.printMetadata("expr", N->getExpression());
2546 Out << ")";
2547}
2548
2550 AsmWriterContext &WriterCtx) {
2551 Out << "!DIObjCProperty(";
2552 MDFieldPrinter Printer(Out, WriterCtx);
2553 Printer.printString("name", N->getName());
2554 Printer.printMetadata("file", N->getRawFile());
2555 Printer.printInt("line", N->getLine());
2556 Printer.printString("setter", N->getSetterName());
2557 Printer.printString("getter", N->getGetterName());
2558 Printer.printInt("attributes", N->getAttributes());
2559 Printer.printMetadata("type", N->getRawType());
2560 Out << ")";
2561}
2562
2564 AsmWriterContext &WriterCtx) {
2565 Out << "!DIImportedEntity(";
2566 MDFieldPrinter Printer(Out, WriterCtx);
2568 Printer.printString("name", N->getName());
2569 Printer.printMetadata("scope", N->getRawScope(), false);
2570 Printer.printMetadata("entity", N->getRawEntity());
2571 Printer.printMetadata("file", N->getRawFile());
2572 Printer.printInt("line", N->getLine());
2573 Printer.printMetadata("elements", N->getRawElements());
2574 Out << ")";
2575}
2576
2578 AsmWriterContext &Ctx) {
2579 if (Node->isDistinct())
2580 Out << "distinct ";
2581 else if (Node->isTemporary())
2582 Out << "<temporary!> ";
2583
2584 switch (Node->getMetadataID()) {
2585 default:
2587#define HANDLE_MDNODE_LEAF(CLASS) \
2588 case Metadata::CLASS##Kind: \
2589 write##CLASS(Out, cast(Node), Ctx); \
2590 break;
2591#include "llvm/IR/Metadata.def"
2592 }
2593}
2594
2595
2596
2598 AsmWriterContext &WriterCtx) {
2599 if (V->hasName()) {
2601 return;
2602 }
2603
2604 const Constant *CV = dyn_cast(V);
2605 if (CV && !isa(CV)) {
2606 assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2608 return;
2609 }
2610
2611 if (const InlineAsm *IA = dyn_cast(V)) {
2612 Out << "asm ";
2613 if (IA->hasSideEffects())
2614 Out << "sideeffect ";
2615 if (IA->isAlignStack())
2616 Out << "alignstack ";
2617
2619 Out << "inteldialect ";
2620 if (IA->canThrow())
2621 Out << "unwind ";
2622 Out << '"';
2623 printEscapedString(IA->getAsmString(), Out);
2624 Out << "\", \"";
2625 printEscapedString(IA->getConstraintString(), Out);
2626 Out << '"';
2627 return;
2628 }
2629
2630 if (auto *MD = dyn_cast(V)) {
2632 true);
2633 return;
2634 }
2635
2636 char Prefix = '%';
2637 int Slot;
2638 auto *Machine = WriterCtx.Machine;
2639
2641 if (const GlobalValue *GV = dyn_cast(V)) {
2642 Slot = Machine->getGlobalSlot(GV);
2643 Prefix = '@';
2644 } else {
2645 Slot = Machine->getLocalSlot(V);
2646
2647
2648
2649
2650 if (Slot == -1)
2652 Slot = Machine->getLocalSlot(V);
2654 }
2655 }
2657
2658 if (const GlobalValue *GV = dyn_cast(V)) {
2659 Slot = Machine->getGlobalSlot(GV);
2660 Prefix = '@';
2661 } else {
2662 Slot = Machine->getLocalSlot(V);
2663 }
2666 } else {
2667 Slot = -1;
2668 }
2669
2670 if (Slot != -1)
2671 Out << Prefix << Slot;
2672 else
2673 Out << "";
2674}
2675
2677 AsmWriterContext &WriterCtx,
2678 bool FromValue) {
2679
2680
2681 if (const DIExpression *Expr = dyn_cast(MD)) {
2683 return;
2684 }
2685 if (const DIArgList *ArgList = dyn_cast(MD)) {
2687 return;
2688 }
2689
2690 if (const MDNode *N = dyn_cast(MD)) {
2691 std::unique_ptr MachineStorage;
2693 if (!WriterCtx.Machine) {
2694 MachineStorage = std::make_unique(WriterCtx.Context);
2695 WriterCtx.Machine = MachineStorage.get();
2696 }
2697 int Slot = WriterCtx.Machine->getMetadataSlot(N);
2698 if (Slot == -1) {
2699 if (const DILocation *Loc = dyn_cast(N)) {
2701 return;
2702 }
2703
2704
2705 Out << "<" << N << ">";
2706 } else
2707 Out << '!' << Slot;
2708 return;
2709 }
2710
2711 if (const MDString *MDS = dyn_cast(MD)) {
2712 Out << "!\"";
2713 printEscapedString(MDS->getString(), Out);
2714 Out << '"';
2715 return;
2716 }
2717
2718 auto *V = cast(MD);
2719 assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2720 assert((FromValue || !isa(V)) &&
2721 "Unexpected function-local metadata outside of value argument");
2722
2723 WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2724 Out << ' ';
2726}
2727
2728namespace {
2729
2730class AssemblyWriter {
2732 const Module *TheModule = nullptr;
2734 std::unique_ptr SlotTrackerStorage;
2736 TypePrinting TypePrinter;
2739 bool IsForDebug;
2740 bool ShouldPreserveUseListOrder;
2743
2746
2747public:
2748
2751 bool ShouldPreserveUseListOrder = false);
2752
2755
2756 AsmWriterContext getContext() {
2757 return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2758 }
2759
2760 void printMDNodeBody(const MDNode *MD);
2761 void printNamedMDNode(const NamedMDNode *NMD);
2762
2763 void printModule(const Module *M);
2764
2765 void writeOperand(const Value *Op, bool PrintType);
2766 void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2767 void writeOperandBundles(const CallBase *Call);
2768 void writeSyncScope(const LLVMContext &Context,
2770 void writeAtomic(const LLVMContext &Context,
2773 void writeAtomicCmpXchg(const LLVMContext &Context,
2777
2778 void writeAllMDNodes();
2779 void writeMDNode(unsigned Slot, const MDNode *Node);
2780 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2781 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2782 void writeAllAttributeGroups();
2783
2784 void printTypeIdentities();
2788 void printComdat(const Comdat *C);
2789 void printFunction(const Function *F);
2791 void printBasicBlock(const BasicBlock *BB);
2792 void printInstructionLine(const Instruction &I);
2793 void printInstruction(const Instruction &I);
2794 void printDbgMarker(const DbgMarker &DPI);
2796 void printDbgLabelRecord(const DbgLabelRecord &DLR);
2797 void printDbgRecord(const DbgRecord &DR);
2798 void printDbgRecordLine(const DbgRecord &DR);
2799
2800 void printUseListOrder(const Value *V, const std::vector &Shuffle);
2801 void printUseLists(const Function *F);
2802
2803 void printModuleSummaryIndex();
2804 void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2806 void printAliasSummary(const AliasSummary *AS);
2809 void printTypeIdSummary(const TypeIdSummary &TIS);
2812 void printArgs(const std::vector<uint64_t> &Args);
2816 void
2817 printNonConstVCalls(const std::vectorFunctionSummary::VFuncId &VCallList,
2818 const char *Tag);
2819 void
2820 printConstVCalls(const std::vectorFunctionSummary::ConstVCall &VCallList,
2821 const char *Tag);
2822
2823private:
2824
2825 void printMetadataAttachments(
2826 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2828
2829
2830
2831 void printInfoComment(const Value &V);
2832
2833
2834
2835 void printGCRelocateComment(const GCRelocateInst &Relocate);
2836};
2837
2838}
2839
2842 bool IsForDebug, bool ShouldPreserveUseListOrder)
2843 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2844 IsForDebug(IsForDebug),
2845 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2846 if (!TheModule)
2847 return;
2848 for (const GlobalObject &GO : TheModule->global_objects())
2850 Comdats.insert(C);
2851}
2852
2855 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(nullptr),
2856 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2857
2858void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2859 if (!Operand) {
2860 Out << "<null operand!>";
2861 return;
2862 }
2863 if (PrintType) {
2864 TypePrinter.print(Operand->getType(), Out);
2865 Out << ' ';
2866 }
2867 auto WriterCtx = getContext();
2869}
2870
2871void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2873 switch (SSID) {
2875 break;
2876 }
2877 default: {
2878 if (SSNs.empty())
2880
2881 Out << " syncscope(\"";
2882 printEscapedString(SSNs[SSID], Out);
2883 Out << "\")";
2884 break;
2885 }
2886 }
2887}
2888
2889void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2892 if (Ordering == AtomicOrdering::NotAtomic)
2893 return;
2894
2895 writeSyncScope(Context, SSID);
2897}
2898
2899void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2903 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2904 FailureOrdering != AtomicOrdering::NotAtomic);
2905
2906 writeSyncScope(Context, SSID);
2907 Out << " " << toIRString(SuccessOrdering);
2908 Out << " " << toIRString(FailureOrdering);
2909}
2910
2911void AssemblyWriter::writeParamOperand(const Value *Operand,
2913 if (!Operand) {
2914 Out << "<null operand!>";
2915 return;
2916 }
2917
2918
2919 TypePrinter.print(Operand->getType(), Out);
2920
2921 if (Attrs.hasAttributes()) {
2922 Out << ' ';
2923 writeAttributeSet(Attrs);
2924 }
2925 Out << ' ';
2926
2927 auto WriterCtx = getContext();
2929}
2930
2931void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2932 if (->hasOperandBundles())
2933 return;
2934
2935 Out << " [ ";
2936
2937 bool FirstBundle = true;
2938 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2940
2941 if (!FirstBundle)
2942 Out << ", ";
2943 FirstBundle = false;
2944
2945 Out << '"';
2946 printEscapedString(BU.getTagName(), Out);
2947 Out << '"';
2948
2949 Out << '(';
2950
2951 bool FirstInput = true;
2952 auto WriterCtx = getContext();
2953 for (const auto &Input : BU.Inputs) {
2954 if (!FirstInput)
2955 Out << ", ";
2956 FirstInput = false;
2957
2958 if (Input == nullptr)
2959 Out << "<null operand bundle!>";
2960 else {
2961 TypePrinter.print(Input->getType(), Out);
2962 Out << " ";
2964 }
2965 }
2966
2967 Out << ')';
2968 }
2969
2970 Out << " ]";
2971}
2972
2973void AssemblyWriter::printModule(const Module *M) {
2974 Machine.initializeIfNeeded();
2975
2976 if (ShouldPreserveUseListOrder)
2978
2979 if (->getModuleIdentifier().empty() &&
2980
2981
2982 M->getModuleIdentifier().find('\n') == std:🧵:npos)
2983 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2984
2985 if (->getSourceFileName().empty()) {
2986 Out << "source_filename = \"";
2987 printEscapedString(M->getSourceFileName(), Out);
2988 Out << "\"\n";
2989 }
2990
2991 const std::string &DL = M->getDataLayoutStr();
2993 Out << "target datalayout = \"" << DL << "\"\n";
2994 if (->getTargetTriple().empty())
2995 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2996
2997 if (->getModuleInlineAsm().empty()) {
2998 Out << '\n';
2999
3000
3002 do {
3004 std::tie(Front, Asm) = Asm.split('\n');
3005
3006
3007
3008 Out << "module asm \"";
3009 printEscapedString(Front, Out);
3010 Out << "\"\n";
3011 } while (.empty());
3012 }
3013
3014 printTypeIdentities();
3015
3016
3017 if (!Comdats.empty())
3018 Out << '\n';
3019 for (const Comdat *C : Comdats) {
3020 printComdat(C);
3021 if (C != Comdats.back())
3022 Out << '\n';
3023 }
3024
3025
3026 if (->global_empty()) Out << '\n';
3028 printGlobal(&GV); Out << '\n';
3029 }
3030
3031
3032 if (->alias_empty()) Out << "\n";
3034 printAlias(&GA);
3035
3036
3037 if (->ifunc_empty()) Out << "\n";
3039 printIFunc(&GI);
3040
3041
3043 Out << '\n';
3044 printFunction(&F);
3045 }
3046
3047
3048 printUseLists(nullptr);
3049
3050
3051 if (.as_empty()) {
3052 Out << '\n';
3053 writeAllAttributeGroups();
3054 }
3055
3056
3057 if (->named_metadata_empty()) Out << '\n';
3058
3060 printNamedMDNode(&Node);
3061
3062
3063 if (.mdn_empty()) {
3064 Out << '\n';
3065 writeAllMDNodes();
3066 }
3067}
3068
3069void AssemblyWriter::printModuleSummaryIndex() {
3071 int NumSlots = Machine.initializeIndexIfNeeded();
3072
3073 Out << "\n";
3074
3075
3076
3077 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
3078 std::string RegularLTOModuleName =
3080 moduleVec.resize(TheIndex->modulePaths().size());
3081 for (auto &[ModPath, ModHash] : TheIndex->modulePaths())
3082 moduleVec[Machine.getModulePathSlot(ModPath)] = std::make_pair(
3083
3084
3085 ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
3086
3087 unsigned i = 0;
3088 for (auto &ModPair : moduleVec) {
3089 Out << "^" << i++ << " = module: (";
3090 Out << "path: \"";
3091 printEscapedString(ModPair.first, Out);
3092 Out << "\", hash: (";
3093 FieldSeparator FS;
3094 for (auto Hash : ModPair.second)
3095 Out << FS << Hash;
3096 Out << "))\n";
3097 }
3098
3099
3100
3101 for (auto &GlobalList : *TheIndex) {
3102 auto GUID = GlobalList.first;
3103 for (auto &Summary : GlobalList.second.SummaryList)
3105 }
3106
3107
3108 for (auto &GlobalList : *TheIndex) {
3109 auto GUID = GlobalList.first;
3110 auto VI = TheIndex->getValueInfo(GlobalList);
3111 printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
3112 }
3113
3114
3115 for (const auto &TID : TheIndex->typeIds()) {
3116 Out << "^" << Machine.getTypeIdSlot(TID.second.first)
3117 << " = typeid: (name: \"" << TID.second.first << "\"";
3118 printTypeIdSummary(TID.second.second);
3119 Out << ") ; guid = " << TID.first << "\n";
3120 }
3121
3122
3123 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
3125 Out << "^" << Machine.getTypeIdCompatibleVtableSlot(TId.first)
3126 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
3127 printTypeIdCompatibleVtableSummary(TId.second);
3128 Out << ") ; guid = " << GUID << "\n";
3129 }
3130
3131
3132 if (TheIndex->getFlags()) {
3133 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
3134 ++NumSlots;
3135 }
3136
3137 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
3138 << "\n";
3139}
3140
3141static const char *
3143 switch (K) {
3145 return "indir";
3147 return "singleImpl";
3149 return "branchFunnel";
3150 }
3151 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
3152}
3153
3156 switch (K) {
3158 return "indir";
3160 return "uniformRetVal";
3162 return "uniqueRetVal";
3164 return "virtualConstProp";
3165 }
3166 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
3167}
3168
3170 switch (K) {
3172 return "unknown";
3174 return "unsat";
3176 return "byteArray";
3178 return "inline";
3180 return "single";
3182 return "allOnes";
3183 }
3185}
3186
3187void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3190
3191
3192
3194 Out << ", alignLog2: " << TTRes.AlignLog2;
3196 Out << ", sizeM1: " << TTRes.SizeM1;
3198
3201 Out << ", inlineBits: " << TTRes.InlineBits;
3202
3203 Out << ")";
3204}
3205
3206void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3207 Out << ", summary: (";
3208 printTypeTestResolution(TIS.TTRes);
3209 if (!TIS.WPDRes.empty()) {
3210 Out << ", wpdResolutions: (";
3211 FieldSeparator FS;
3212 for (auto &WPDRes : TIS.WPDRes) {
3213 Out << FS;
3214 Out << "(offset: " << WPDRes.first << ", ";
3215 printWPDRes(WPDRes.second);
3216 Out << ")";
3217 }
3218 Out << ")";
3219 }
3220 Out << ")";
3221}
3222
3223void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3225 Out << ", summary: (";
3226 FieldSeparator FS;
3227 for (auto &P : TI) {
3228 Out << FS;
3229 Out << "(offset: " << P.AddressPointOffset << ", ";
3230 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3231 Out << ")";
3232 }
3233 Out << ")";
3234}
3235
3236void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3237 Out << "args: (";
3238 FieldSeparator FS;
3239 for (auto arg : Args) {
3240 Out << FS;
3241 Out << arg;
3242 }
3243 Out << ")";
3244}
3245
3247 Out << "wpdRes: (kind: ";
3249
3251 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3252
3253 if (!WPDRes.ResByArg.empty()) {
3254 Out << ", resByArg: (";
3255 FieldSeparator FS;
3256 for (auto &ResByArg : WPDRes.ResByArg) {
3257 Out << FS;
3258 printArgs(ResByArg.first);
3259 Out << ", byArg: (kind: ";
3261 if (ResByArg.second.TheKind ==
3263 ResByArg.second.TheKind ==
3265 Out << ", info: " << ResByArg.second.Info;
3266
3267
3268
3269 if (ResByArg.second.Byte || ResByArg.second.Bit)
3270 Out << ", byte: " << ResByArg.second.Byte
3271 << ", bit: " << ResByArg.second.Bit;
3272
3273 Out << ")";
3274 }
3275 Out << ")";
3276 }
3277 Out << ")";
3278}
3279
3281 switch (SK) {
3283 return "alias";
3285 return "function";
3287 return "variable";
3288 }
3290}
3291
3292void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3293 Out << ", aliasee: ";
3294
3295
3296
3298 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3299 else
3300 Out << "null";
3301}
3302
3303void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3304 auto VTableFuncs = GS->vTableFuncs();
3305 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3306 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3307 << "constant: " << GS->VarFlags.Constant;
3308 if (!VTableFuncs.empty())
3309 Out << ", "
3310 << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3311 Out << ")";
3312
3313 if (!VTableFuncs.empty()) {
3314 Out << ", vTableFuncs: (";
3315 FieldSeparator FS;
3316 for (auto &P : VTableFuncs) {
3317 Out << FS;
3318 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3319 << ", offset: " << P.VTableOffset;
3320 Out << ")";
3321 }
3322 Out << ")";
3323 }
3324}
3325
3327 switch (LT) {
3329 return "external";
3331 return "private";
3333 return "internal";
3335 return "linkonce";
3337 return "linkonce_odr";
3339 return "weak";
3341 return "weak_odr";
3343 return "common";
3345 return "appending";
3347 return "extern_weak";
3349 return "available_externally";
3350 }
3352}
3353
3354
3355
3356
3359 return "";
3361}
3362
3364 switch (Vis) {
3366 return "default";
3368 return "hidden";
3370 return "protected";
3371 }
3373}
3374
3376 switch (IK) {
3378 return "definition";
3380 return "declaration";
3381 }
3383}
3384
3385void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3386 Out << ", insts: " << FS->instCount();
3387 if (FS->fflags().anyFlagSet())
3388 Out << ", " << FS->fflags();
3389
3390 if (->calls().empty()) {
3391 Out << ", calls: (";
3392 FieldSeparator IFS;
3393 for (auto &Call : FS->calls()) {
3394 Out << IFS;
3395 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3396 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3398 else if (Call.second.RelBlockFreq)
3399 Out << ", relbf: " << Call.second.RelBlockFreq;
3400
3401
3402 if (Call.second.HasTailCall)
3403 Out << ", tail: 1";
3404 Out << ")";
3405 }
3406 Out << ")";
3407 }
3408
3409 if (const auto *TIdInfo = FS->getTypeIdInfo())
3410 printTypeIdInfo(*TIdInfo);
3411
3412
3413
3414 auto AllocTypeName = [](uint8_t Type) -> const char * {
3415 switch (Type) {
3416 case (uint8_t)AllocationType::None:
3417 return "none";
3418 case (uint8_t)AllocationType::NotCold:
3419 return "notcold";
3420 case (uint8_t)AllocationType::Cold:
3421 return "cold";
3422 case (uint8_t)AllocationType::Hot:
3423 return "hot";
3424 }
3426 };
3427
3428 if (->allocs().empty()) {
3429 Out << ", allocs: (";
3430 FieldSeparator AFS;
3431 for (auto &AI : FS->allocs()) {
3432 Out << AFS;
3433 Out << "(versions: (";
3434 FieldSeparator VFS;
3435 for (auto V : AI.Versions) {
3436 Out << VFS;
3437 Out << AllocTypeName(V);
3438 }
3439 Out << "), memProf: (";
3440 FieldSeparator MIBFS;
3441 for (auto &MIB : AI.MIBs) {
3442 Out << MIBFS;
3443 Out << "(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3444 Out << ", stackIds: (";
3445 FieldSeparator SIDFS;
3446 for (auto Id : MIB.StackIdIndices) {
3447 Out << SIDFS;
3448 Out << TheIndex->getStackIdAtIndex(Id);
3449 }
3450 Out << "))";
3451 }
3452 Out << "))";
3453 }
3454 Out << ")";
3455 }
3456
3457 if (->callsites().empty()) {
3458 Out << ", callsites: (";
3459 FieldSeparator SNFS;
3460 for (auto &CI : FS->callsites()) {
3461 Out << SNFS;
3462 if (CI.Callee)
3463 Out << "(callee: ^" << Machine.getGUIDSlot(CI.Callee.getGUID());
3464 else
3465 Out << "(callee: null";
3466 Out << ", clones: (";
3467 FieldSeparator VFS;
3468 for (auto V : CI.Clones) {
3469 Out << VFS;
3470 Out << V;
3471 }
3472 Out << "), stackIds: (";
3473 FieldSeparator SIDFS;
3474 for (auto Id : CI.StackIdIndices) {
3475 Out << SIDFS;
3476 Out << TheIndex->getStackIdAtIndex(Id);
3477 }
3478 Out << "))";
3479 }
3480 Out << ")";
3481 }
3482
3485 };
3486
3487 if (->paramAccesses().empty()) {
3488 Out << ", params: (";
3489 FieldSeparator IFS;
3490 for (auto &PS : FS->paramAccesses()) {
3491 Out << IFS;
3492 Out << "(param: " << PS.ParamNo;
3493 Out << ", offset: ";
3494 PrintRange(PS.Use);
3495 if (!PS.Calls.empty()) {
3496 Out << ", calls: (";
3497 FieldSeparator IFS;
3498 for (auto &Call : PS.Calls) {
3499 Out << IFS;
3500 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3501 Out << ", param: " << Call.ParamNo;
3502 Out << ", offset: ";
3503 PrintRange(Call.Offsets);
3504 Out << ")";
3505 }
3506 Out << ")";
3507 }
3508 Out << ")";
3509 }
3510 Out << ")";
3511 }
3512}
3513
3514void AssemblyWriter::printTypeIdInfo(
3516 Out << ", typeIdInfo: (";
3517 FieldSeparator TIDFS;
3518 if (!TIDInfo.TypeTests.empty()) {
3519 Out << TIDFS;
3520 Out << "typeTests: (";
3521 FieldSeparator FS;
3522 for (auto &GUID : TIDInfo.TypeTests) {
3523 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3524 if (TidIter.first == TidIter.second) {
3525 Out << FS;
3526 Out << GUID;
3527 continue;
3528 }
3529
3530 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
3531 Out << FS;
3532 auto Slot = Machine.getTypeIdSlot(TypeIdPair.first);
3534 Out << "^" << Slot;
3535 }
3536 }
3537 Out << ")";
3538 }
3540 Out << TIDFS;
3542 }
3544 Out << TIDFS;
3546 }
3548 Out << TIDFS;
3550 "typeTestAssumeConstVCalls");
3551 }
3553 Out << TIDFS;
3555 "typeCheckedLoadConstVCalls");
3556 }
3557 Out << ")";
3558}
3559
3561 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3562 if (TidIter.first == TidIter.second) {
3563 Out << "vFuncId: (";
3564 Out << "guid: " << VFId.GUID;
3565 Out << ", offset: " << VFId.Offset;
3566 Out << ")";
3567 return;
3568 }
3569
3570 FieldSeparator FS;
3571 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
3572 Out << FS;
3573 Out << "vFuncId: (";
3574 auto Slot = Machine.getTypeIdSlot(TypeIdPair.first);
3576 Out << "^" << Slot;
3577 Out << ", offset: " << VFId.Offset;
3578 Out << ")";
3579 }
3580}
3581
3582void AssemblyWriter::printNonConstVCalls(
3583 const std::vectorFunctionSummary::VFuncId &VCallList, const char *Tag) {
3584 Out << Tag << ": (";
3585 FieldSeparator FS;
3586 for (auto &VFuncId : VCallList) {
3587 Out << FS;
3588 printVFuncId(VFuncId);
3589 }
3590 Out << ")";
3591}
3592
3593void AssemblyWriter::printConstVCalls(
3594 const std::vectorFunctionSummary::ConstVCall &VCallList,
3595 const char *Tag) {
3596 Out << Tag << ": (";
3597 FieldSeparator FS;
3598 for (auto &ConstVCall : VCallList) {
3599 Out << FS;
3600 Out << "(";
3601 printVFuncId(ConstVCall.VFunc);
3602 if (!ConstVCall.Args.empty()) {
3603 Out << ", ";
3604 printArgs(ConstVCall.Args);
3605 }
3606 Out << ")";
3607 }
3608 Out << ")";
3609}
3610
3611void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3615 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3616 << ", flags: (";
3618 Out << ", visibility: "
3621 Out << ", live: " << GVFlags.Live;
3622 Out << ", dsoLocal: " << GVFlags.DSOLocal;
3623 Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3624 Out << ", importType: "
3626 Out << ")";
3627
3629 printAliasSummary(cast(&Summary));
3631 printFunctionSummary(cast(&Summary));
3632 else
3633 printGlobalVarSummary(cast(&Summary));
3634
3635 auto RefList = Summary.refs();
3636 if (!RefList.empty()) {
3637 Out << ", refs: (";
3638 FieldSeparator FS;
3639 for (auto &Ref : RefList) {
3640 Out << FS;
3641 if (Ref.isReadOnly())
3642 Out << "readonly ";
3643 else if (Ref.isWriteOnly())
3644 Out << "writeonly ";
3645 Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3646 }
3647 Out << ")";
3648 }
3649
3650 Out << ")";
3651}
3652
3653void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3654 Out << "^" << Slot << " = gv: (";
3655 if (VI.hasName() && .name().empty())
3656 Out << "name: \"" << VI.name() << "\"";
3657 else
3658 Out << "guid: " << VI.getGUID();
3659 if (.getSummaryList().empty()) {
3660 Out << ", summaries: (";
3661 FieldSeparator FS;
3662 for (auto &Summary : VI.getSummaryList()) {
3663 Out << FS;
3664 printSummary(*Summary);
3665 }
3666 Out << ")";
3667 }
3668 Out << ")";
3669 if (VI.hasName() && .name().empty())
3670 Out << " ; guid = " << VI.getGUID();
3671 Out << "\n";
3672}
3673
3676 if (Name.empty()) {
3677 Out << " ";
3678 } else {
3679 unsigned char FirstC = static_cast<unsigned char>(Name[0]);
3680 if (isalpha(FirstC) || FirstC == '-' || FirstC == '$' || FirstC == '.' ||
3681 FirstC == '_')
3682 Out << FirstC;
3683 else
3684 Out << '\\' << hexdigit(FirstC >> 4) << hexdigit(FirstC & 0x0F);
3685 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3686 unsigned char C = Name[i];
3687 if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
3688 Out << C;
3689 else
3690 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3691 }
3692 }
3693}
3694
3695void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3696 Out << '!';
3698 Out << " = !{";
3699 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3700 if (i)
3701 Out << ", ";
3702
3703
3704
3706 if (auto *Expr = dyn_cast(Op)) {
3708 continue;
3709 }
3710
3712 if (Slot == -1)
3713 Out << "";
3714 else
3715 Out << '!' << Slot;
3716 }
3717 Out << "}\n";
3718}
3719
3722 switch (Vis) {
3726 }
3727}
3728
3732 Out << "dso_local ";
3733}
3734
3737 switch (SCT) {
3741 }
3742}
3743
3746 switch (TLM) {
3747 case GlobalVariable::NotThreadLocal:
3748 break;
3749 case GlobalVariable::GeneralDynamicTLSModel:
3750 Out << "thread_local ";
3751 break;
3752 case GlobalVariable::LocalDynamicTLSModel:
3753 Out << "thread_local(localdynamic) ";
3754 break;
3755 case GlobalVariable::InitialExecTLSModel:
3756 Out << "thread_local(initialexec) ";
3757 break;
3758 case GlobalVariable::LocalExecTLSModel:
3759 Out << "thread_local(localexec) ";
3760 break;
3761 }
3762}
3763
3765 switch (UA) {
3766 case GlobalVariable::UnnamedAddr::None:
3767 return "";
3768 case GlobalVariable::UnnamedAddr::Local:
3769 return "local_unnamed_addr";
3770 case GlobalVariable::UnnamedAddr::Global:
3771 return "unnamed_addr";
3772 }
3774}
3775
3779 if ()
3780 return;
3781
3782 if (isa(GO))
3783 Out << ',';
3784 Out << " comdat";
3785
3786 if (GO.getName() == C->getName())
3787 return;
3788
3789 Out << '(';
3791 Out << ')';
3792}
3793
3794void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3796 Out << "; Materializable\n";
3797
3798 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3800 Out << " = ";
3801
3803 Out << "external ";
3804
3811 if (!UA.empty())
3812 Out << UA << ' ';
3813
3815 Out << "addrspace(" << AddressSpace << ") ";
3817 Out << (GV->isConstant() ? "constant " : "global ");
3819
3821 Out << ' ';
3823 }
3824
3826 Out << ", section \"";
3827 printEscapedString(GV->getSection(), Out);
3828 Out << '"';
3829 }
3831 Out << ", partition \"";
3832 printEscapedString(GV->getPartition(), Out);
3833 Out << '"';
3834 }
3836 Out << ", code_model \"";
3837 switch (*CM) {
3839 Out << "tiny";
3840 break;
3842 Out << "small";
3843 break;
3845 Out << "kernel";
3846 break;
3848 Out << "medium";
3849 break;
3851 Out << "large";
3852 break;
3853 }
3854 Out << '"';
3855 }
3856
3861 Out << ", no_sanitize_address";
3863 Out << ", no_sanitize_hwaddress";
3865 Out << ", sanitize_memtag";
3867 Out << ", sanitize_address_dyninit";
3868 }
3869
3872 Out << ", align " << A->value();
3873
3876 printMetadataAttachments(MDs, ", ");
3877
3879 if (Attrs.hasAttributes())
3880 Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3881
3882 printInfoComment(*GV);
3883}
3884
3885void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3887 Out << "; Materializable\n";
3888
3889 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3891 Out << " = ";
3892
3899 if (!UA.empty())
3900 Out << UA << ' ';
3901
3902 Out << "alias ";
3903
3905 Out << ", ";
3906
3908 writeOperand(Aliasee, !isa(Aliasee));
3909 } else {
3910 TypePrinter.print(GA->getType(), Out);
3911 Out << " <>";
3912 }
3913
3915 Out << ", partition \"";
3916 printEscapedString(GA->getPartition(), Out);
3917 Out << '"';
3918 }
3919
3920 printInfoComment(*GA);
3921 Out << '\n';
3922}
3923
3924void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3926 Out << "; Materializable\n";
3927
3928 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3930 Out << " = ";
3931
3935
3936 Out << "ifunc ";
3937
3939 Out << ", ";
3940
3943 } else {
3944 TypePrinter.print(GI->getType(), Out);
3945 Out << " <>";
3946 }
3947
3949 Out << ", partition \"";
3950 printEscapedString(GI->getPartition(), Out);
3951 Out << '"';
3952 }
3953
3954 printInfoComment(*GI);
3955 Out << '\n';
3956}
3957
3958void AssemblyWriter::printComdat(const Comdat *C) {
3959 C->print(Out);
3960}
3961
3962void AssemblyWriter::printTypeIdentities() {
3963 if (TypePrinter.empty())
3964 return;
3965
3966 Out << '\n';
3967
3968
3969 auto &NumberedTypes = TypePrinter.getNumberedTypes();
3970 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3971 Out << '%' << I << " = type ";
3972
3973
3974
3975 TypePrinter.printStructBody(NumberedTypes[I], Out);
3976 Out << '\n';
3977 }
3978
3979 auto &NamedTypes = TypePrinter.getNamedTypes();
3980 for (StructType *NamedType : NamedTypes) {
3982 Out << " = type ";
3983
3984
3985
3986 TypePrinter.printStructBody(NamedType, Out);
3987 Out << '\n';
3988 }
3989}
3990
3991
3992void AssemblyWriter::printFunction(const Function *F) {
3993 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3994
3995 if (F->isMaterializable())
3996 Out << "; Materializable\n";
3997
3999 if (Attrs.hasFnAttrs()) {
4001 std::string AttrStr;
4002
4003 for (const Attribute &Attr : AS) {
4004 if (!Attr.isStringAttribute()) {
4005 if (!AttrStr.empty()) AttrStr += ' ';
4006 AttrStr += Attr.getAsString();
4007 }
4008 }
4009
4010 if (!AttrStr.empty())
4011 Out << "; Function Attrs: " << AttrStr << '\n';
4012 }
4013
4014 Machine.incorporateFunction(F);
4015
4016 if (F->isDeclaration()) {
4017 Out << "declare";
4019 F->getAllMetadata(MDs);
4020 printMetadataAttachments(MDs, " ");
4021 Out << ' ';
4022 } else
4023 Out << "define ";
4024
4029
4030
4033 Out << " ";
4034 }
4035
4037 if (Attrs.hasRetAttrs())
4039 TypePrinter.print(F->getReturnType(), Out);
4040 AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
4041 Out << ' ';
4043 Out << '(';
4044
4045
4046 if (F->isDeclaration() && !IsForDebug) {
4047
4048 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
4049
4050 if (I)
4051 Out << ", ";
4052
4053 TypePrinter.print(FT->getParamType(I), Out);
4054
4057 Out << ' ';
4058 writeAttributeSet(ArgAttrs);
4059 }
4060 }
4061 } else {
4062
4063 for (const Argument &Arg : F->args()) {
4064
4065 if (Arg.getArgNo() != 0)
4066 Out << ", ";
4067 printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
4068 }
4069 }
4070
4071
4072 if (FT->isVarArg()) {
4073 if (FT->getNumParams()) Out << ", ";
4074 Out << "...";
4075 }
4076 Out << ')';
4078 if (!UA.empty())
4079 Out << ' ' << UA;
4080
4081
4082
4084 if (F->getAddressSpace() != 0 || ||
4085 Mod->getDataLayout().getProgramAddressSpace() != 0)
4086 Out << " addrspace(" << F->getAddressSpace() << ")";
4087 if (Attrs.hasFnAttrs())
4088 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
4089 if (F->hasSection()) {
4090 Out << " section \"";
4091 printEscapedString(F->getSection(), Out);
4092 Out << '"';
4093 }
4094 if (F->hasPartition()) {
4095 Out << " partition \"";
4096 printEscapedString(F->getPartition(), Out);
4097 Out << '"';
4098 }
4101 Out << " align " << A->value();
4102 if (F->hasGC())
4103 Out << " gc \"" << F->getGC() << '"';
4104 if (F->hasPrefixData()) {
4105 Out << " prefix ";
4106 writeOperand(F->getPrefixData(), true);
4107 }
4108 if (F->hasPrologueData()) {
4109 Out << " prologue ";
4110 writeOperand(F->getPrologueData(), true);
4111 }
4112 if (F->hasPersonalityFn()) {
4113 Out << " personality ";
4114 writeOperand(F->getPersonalityFn(), true);
4115 }
4116
4117 if (F->isDeclaration()) {
4118 Out << '\n';
4119 } else {
4121 F->getAllMetadata(MDs);
4122 printMetadataAttachments(MDs, " ");
4123
4124 Out << " {";
4125
4127 printBasicBlock(&BB);
4128
4129
4130 printUseLists(F);
4131
4132 Out << "}\n";
4133 }
4134
4135 Machine.purgeFunction();
4136}
4137
4138
4139
4140void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
4141
4142 TypePrinter.print(Arg->getType(), Out);
4143
4144
4145 if (Attrs.hasAttributes()) {
4146 Out << ' ';
4147 writeAttributeSet(Attrs);
4148 }
4149
4150
4152 Out << ' ';
4154 } else {
4156 assert(Slot != -1 && "expect argument in function here");
4157 Out << " %" << Slot;
4158 }
4159}
4160
4161
4162void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
4164 if (BB->hasName()) {
4165 Out << "\n";
4167 Out << ':';
4168 } else if (!IsEntryBlock) {
4169 Out << "\n";
4171 if (Slot != -1)
4172 Out << Slot << ":";
4173 else
4174 Out << ":";
4175 }
4176
4177 if (!IsEntryBlock) {
4178
4179 Out.PadToColumn(50);
4180 Out << ";";
4182
4183 if (PI == PE) {
4184 Out << " No predecessors!";
4185 } else {
4186 Out << " preds = ";
4187 writeOperand(*PI, false);
4188 for (++PI; PI != PE; ++PI) {
4189 Out << ", ";
4190 writeOperand(*PI, false);
4191 }
4192 }
4193 }
4194
4195 Out << "\n";
4196
4197 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
4198
4199
4201 for (const DbgRecord &DR : I.getDbgRecordRange())
4202 printDbgRecordLine(DR);
4203 printInstructionLine(I);
4204 }
4205
4206 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
4207}
4208
4209
4210void AssemblyWriter::printInstructionLine(const Instruction &I) {
4211 printInstruction(I);
4212 Out << '\n';
4213}
4214
4215
4216
4217void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
4218 Out << " ; (";
4219 writeOperand(Relocate.getBasePtr(), false);
4220 Out << ", ";
4222 Out << ")";
4223}
4224
4225
4226
4227void AssemblyWriter::printInfoComment(const Value &V) {
4228 if (const auto *Relocate = dyn_cast(&V))
4229 printGCRelocateComment(*Relocate);
4230
4231 if (AnnotationWriter) {
4232 AnnotationWriter->printInfoComment(V, Out);
4233 }
4234}
4235
4238
4239 if (Operand == nullptr) {
4240 Out << " <cannot get addrspace!>";
4241 return;
4242 }
4244 bool PrintAddrSpace = CallAddrSpace != 0;
4245 if (!PrintAddrSpace) {
4247
4248
4249
4250 if ( || Mod->getDataLayout().getProgramAddressSpace() != 0)
4251 PrintAddrSpace = true;
4252 }
4253 if (PrintAddrSpace)
4254 Out << " addrspace(" << CallAddrSpace << ")";
4255}
4256
4257
4258void AssemblyWriter::printInstruction(const Instruction &I) {
4259 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
4260
4261
4262 Out << " ";
4263
4264
4265 if (I.hasName()) {
4267 Out << " = ";
4268 } else if (.getType()->isVoidTy()) {
4269
4270 int SlotNum = Machine.getLocalSlot(&I);
4271 if (SlotNum == -1)
4272 Out << " = ";
4273 else
4274 Out << '%' << SlotNum << " = ";
4275 }
4276
4277 if (const CallInst *CI = dyn_cast(&I)) {
4278 if (CI->isMustTailCall())
4279 Out << "musttail ";
4280 else if (CI->isTailCall())
4281 Out << "tail ";
4282 else if (CI->isNoTailCall())
4283 Out << "notail ";
4284 }
4285
4286
4287 Out << I.getOpcodeName();
4288
4289
4290 if ((isa(I) && cast(I).isAtomic()) ||
4291 (isa(I) && cast(I).isAtomic()))
4292 Out << " atomic";
4293
4294 if (isa(I) && cast(I).isWeak())
4295 Out << " weak";
4296
4297
4298 if ((isa(I) && cast(I).isVolatile()) ||
4299 (isa(I) && cast(I).isVolatile()) ||
4300 (isa(I) && cast(I).isVolatile()) ||
4301 (isa(I) && cast(I).isVolatile()))
4302 Out << " volatile";
4303
4304
4306
4307
4308 if (const CmpInst *CI = dyn_cast(&I))
4309 Out << ' ' << CI->getPredicate();
4310
4311
4312 if (const AtomicRMWInst *RMWI = dyn_cast(&I))
4314
4315
4316 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
4317
4318
4319 if (isa(I) && cast(I).isConditional()) {
4320 const BranchInst &BI(cast(I));
4321 Out << ' ';
4322 writeOperand(BI.getCondition(), true);
4323 Out << ", ";
4324 writeOperand(BI.getSuccessor(0), true);
4325 Out << ", ";
4326 writeOperand(BI.getSuccessor(1), true);
4327
4328 } else if (isa(I)) {
4330
4331 Out << ' ';
4332 writeOperand(SI.getCondition(), true);
4333 Out << ", ";
4334 writeOperand(SI.getDefaultDest(), true);
4335 Out << " [";
4336 for (auto Case : SI.cases()) {
4337 Out << "\n ";
4338 writeOperand(Case.getCaseValue(), true);
4339 Out << ", ";
4340 writeOperand(Case.getCaseSuccessor(), true);
4341 }
4342 Out << "\n ]";
4343 } else if (isa(I)) {
4344
4345 Out << ' ';
4346 writeOperand(Operand, true);
4347 Out << ", [";
4348
4349 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4350 if (i != 1)
4351 Out << ", ";
4352 writeOperand(I.getOperand(i), true);
4353 }
4354 Out << ']';
4355 } else if (const PHINode *PN = dyn_cast(&I)) {
4356 Out << ' ';
4357 TypePrinter.print(I.getType(), Out);
4358 Out << ' ';
4359
4360 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4361 if (op) Out << ", ";
4362 Out << "[ ";
4363 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4364 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4365 }
4366 } else if (const ExtractValueInst *EVI = dyn_cast(&I)) {
4367 Out << ' ';
4368 writeOperand(I.getOperand(0), true);
4369 for (unsigned i : EVI->indices())
4370 Out << ", " << i;
4371 } else if (const InsertValueInst *IVI = dyn_cast(&I)) {
4372 Out << ' ';
4373 writeOperand(I.getOperand(0), true); Out << ", ";
4374 writeOperand(I.getOperand(1), true);
4375 for (unsigned i : IVI->indices())
4376 Out << ", " << i;
4377 } else if (const LandingPadInst *LPI = dyn_cast(&I)) {
4378 Out << ' ';
4379 TypePrinter.print(I.getType(), Out);
4380 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4381 Out << '\n';
4382
4383 if (LPI->isCleanup())
4384 Out << " cleanup";
4385
4386 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4387 if (i != 0 || LPI->isCleanup()) Out << "\n";
4388 if (LPI->isCatch(i))
4389 Out << " catch ";
4390 else
4391 Out << " filter ";
4392
4393 writeOperand(LPI->getClause(i), true);
4394 }
4395 } else if (const auto *CatchSwitch = dyn_cast(&I)) {
4396 Out << " within ";
4397 writeOperand(CatchSwitch->getParentPad(), false);
4398 Out << " [";
4399 unsigned Op = 0;
4400 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4401 if (Op > 0)
4402 Out << ", ";
4403 writeOperand(PadBB, true);
4404 ++Op;
4405 }
4406 Out << "] unwind ";
4407 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4408 writeOperand(UnwindDest, true);
4409 else
4410 Out << "to caller";
4411 } else if (const auto *FPI = dyn_cast(&I)) {
4412 Out << " within ";
4413 writeOperand(FPI->getParentPad(), false);
4414 Out << " [";
4415 for (unsigned Op = 0, NumOps = FPI->arg_size(); Op < NumOps; ++Op) {
4416 if (Op > 0)
4417 Out << ", ";
4418 writeOperand(FPI->getArgOperand(Op), true);
4419 }
4420 Out << ']';
4421 } else if (isa(I) && !Operand) {
4422 Out << " void";
4423 } else if (const auto *CRI = dyn_cast(&I)) {
4424 Out << " from ";
4425 writeOperand(CRI->getOperand(0), false);
4426
4427 Out << " to ";
4428 writeOperand(CRI->getOperand(1), true);
4429 } else if (const auto *CRI = dyn_cast(&I)) {
4430 Out << " from ";
4431 writeOperand(CRI->getOperand(0), false);
4432
4433 Out << " unwind ";
4434 if (CRI->hasUnwindDest())
4435 writeOperand(CRI->getOperand(1), true);
4436 else
4437 Out << "to caller";
4438 } else if (const CallInst *CI = dyn_cast(&I)) {
4439
4441 Out << " ";
4443 }
4444
4445 Operand = CI->getCalledOperand();
4447 Type *RetTy = FTy->getReturnType();
4449
4452
4453
4455
4456
4457
4458
4459 Out << ' ';
4460 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4461 Out << ' ';
4462 writeOperand(Operand, false);
4463 Out << '(';
4464 for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4465 if (op > 0)
4466 Out << ", ";
4467 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4468 }
4469
4470
4471
4472 if (CI->isMustTailCall() && CI->getParent() &&
4473 CI->getParent()->getParent() &&
4474 CI->getParent()->getParent()->isVarArg()) {
4475 if (CI->arg_size() > 0)
4476 Out << ", ";
4477 Out << "...";
4478 }
4479
4480 Out << ')';
4483
4484 writeOperandBundles(CI);
4485 } else if (const InvokeInst *II = dyn_cast(&I)) {
4486 Operand = II->getCalledOperand();
4488 Type *RetTy = FTy->getReturnType();
4490
4491
4493 Out << " ";
4495 }
4496
4499
4500
4502
4503
4504
4505
4506
4507 Out << ' ';
4508 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4509 Out << ' ';
4510 writeOperand(Operand, false);
4511 Out << '(';
4512 for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4513 if (op)
4514 Out << ", ";
4516 }
4517
4518 Out << ')';
4521
4522 writeOperandBundles(II);
4523
4524 Out << "\n to ";
4525 writeOperand(II->getNormalDest(), true);
4526 Out << " unwind ";
4527 writeOperand(II->getUnwindDest(), true);
4528 } else if (const CallBrInst *CBI = dyn_cast(&I)) {
4529 Operand = CBI->getCalledOperand();
4531 Type *RetTy = FTy->getReturnType();
4533
4534
4536 Out << " ";
4538 }
4539
4542
4543
4544
4545
4546
4547 Out << ' ';
4548 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4549 Out << ' ';
4550 writeOperand(Operand, false);
4551 Out << '(';
4552 for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4553 if (op)
4554 Out << ", ";
4555 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4556 }
4557
4558 Out << ')';
4561
4562 writeOperandBundles(CBI);
4563
4564 Out << "\n to ";
4565 writeOperand(CBI->getDefaultDest(), true);
4566 Out << " [";
4567 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4568 if (i != 0)
4569 Out << ", ";
4570 writeOperand(CBI->getIndirectDest(i), true);
4571 }
4572 Out << ']';
4573 } else if (const AllocaInst *AI = dyn_cast(&I)) {
4574 Out << ' ';
4575 if (AI->isUsedWithInAlloca())
4576 Out << "inalloca ";
4577 if (AI->isSwiftError())
4578 Out << "swifterror ";
4579 TypePrinter.print(AI->getAllocatedType(), Out);
4580
4581
4582
4583
4584
4585 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4586 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4587 Out << ", ";
4588 writeOperand(AI->getArraySize(), true);
4589 }
4591 Out << ", align " << A->value();
4592 }
4593
4594 unsigned AddrSpace = AI->getAddressSpace();
4595 if (AddrSpace != 0) {
4596 Out << ", addrspace(" << AddrSpace << ')';
4597 }
4598 } else if (isa(I)) {
4599 if (Operand) {
4600 Out << ' ';
4601 writeOperand(Operand, true);
4602 }
4603 Out << " to ";
4604 TypePrinter.print(I.getType(), Out);
4605 } else if (isa(I)) {
4606 if (Operand) {
4607 Out << ' ';
4608 writeOperand(Operand, true);
4609 }
4610 Out << ", ";
4611 TypePrinter.print(I.getType(), Out);
4612 } else if (Operand) {
4613 if (const auto *GEP = dyn_cast(&I)) {
4614 Out << ' ';
4615 TypePrinter.print(GEP->getSourceElementType(), Out);
4616 Out << ',';
4617 } else if (const auto *LI = dyn_cast(&I)) {
4618 Out << ' ';
4619 TypePrinter.print(LI->getType(), Out);
4620 Out << ',';
4621 }
4622
4623
4624
4625
4626 bool PrintAllTypes = false;
4628
4629
4630
4631 if (isa(I) || isa(I) || isa(I) ||
4633 isa(I)) {
4634 PrintAllTypes = true;
4635 } else {
4636 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4637 Operand = I.getOperand(i);
4638
4639
4640 if (Operand && Operand->getType() != TheType) {
4641 PrintAllTypes = true;
4642 break;
4643 }
4644 }
4645 }
4646
4647 if (!PrintAllTypes) {
4648 Out << ' ';
4649 TypePrinter.print(TheType, Out);
4650 }
4651
4652 Out << ' ';
4653 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4654 if (i) Out << ", ";
4655 writeOperand(I.getOperand(i), PrintAllTypes);
4656 }
4657 }
4658
4659
4660 if (const LoadInst *LI = dyn_cast(&I)) {
4661 if (LI->isAtomic())
4662 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4664 Out << ", align " << A->value();
4665 } else if (const StoreInst *SI = dyn_cast(&I)) {
4666 if (SI->isAtomic())
4667 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4669 Out << ", align " << A->value();
4670 } else if (const AtomicCmpXchgInst *CXI = dyn_cast(&I)) {
4671 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4672 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4673 Out << ", align " << CXI->getAlign().value();
4674 } else if (const AtomicRMWInst *RMWI = dyn_cast(&I)) {
4675 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4676 RMWI->getSyncScopeID());
4677 Out << ", align " << RMWI->getAlign().value();
4678 } else if (const FenceInst *FI = dyn_cast(&I)) {
4679 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4680 } else if (const ShuffleVectorInst *SVI = dyn_cast(&I)) {
4681 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4682 }
4683
4684
4686 I.getAllMetadata(InstMD);
4687 printMetadataAttachments(InstMD, ", ");
4688
4689
4690 printInfoComment(I);
4691}
4692
4693void AssemblyWriter::printDbgMarker(const DbgMarker &Marker) {
4694
4695
4697 printDbgRecord(DPR);
4698 Out << "\n";
4699 }
4700
4701 Out << " DbgMarker -> { ";
4703 Out << " }";
4704}
4705
4706void AssemblyWriter::printDbgRecord(const DbgRecord &DR) {
4707 if (auto *DVR = dyn_cast(&DR))
4708 printDbgVariableRecord(*DVR);
4709 else if (auto *DLR = dyn_cast(&DR))
4710 printDbgLabelRecord(*DLR);
4711 else
4713}
4714
4715void AssemblyWriter::printDbgVariableRecord(const DbgVariableRecord &DVR) {
4716 auto WriterCtx = getContext();
4717 Out << "#dbg_";
4718 switch (DVR.getType()) {
4719 case DbgVariableRecord::LocationType::Value:
4720 Out << "value";
4721 break;
4722 case DbgVariableRecord::LocationType::Declare:
4723 Out << "declare";
4724 break;
4725 case DbgVariableRecord::LocationType::Assign:
4726 Out << "assign";
4727 break;
4728 default:
4730 "Tried to print a DbgVariableRecord with an invalid LocationType!");
4731 }
4732 Out << "(";
4734 Out << ", ";
4736 Out << ", ";
4738 Out << ", ";
4741 Out << ", ";
4743 Out << ", ";
4745 Out << ", ";
4746 }
4748 Out << ")";
4749}
4750
4751
4752
4753void AssemblyWriter::printDbgRecordLine(const DbgRecord &DR) {
4754
4755 Out << " ";
4756 printDbgRecord(DR);
4757 Out << '\n';
4758}
4759
4760void AssemblyWriter::printDbgLabelRecord(const DbgLabelRecord &Label) {
4761 auto WriterCtx = getContext();
4762 Out << "#dbg_label(";
4764 Out << ", ";
4766 Out << ")";
4767}
4768
4769void AssemblyWriter::printMetadataAttachments(
4770 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4772 if (MDs.empty())
4773 return;
4774
4775 if (MDNames.empty())
4776 MDs[0].second->getContext().getMDKindNames(MDNames);
4777
4778 auto WriterCtx = getContext();
4779 for (const auto &I : MDs) {
4781 Out << Separator;
4782 if (Kind < MDNames.size()) {
4783 Out << "!";
4785 } else
4786 Out << "!<unknown kind #" << Kind << ">";
4787 Out << ' ';
4789 }
4790}
4791
4792void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4793 Out << '!' << Slot << " = ";
4794 printMDNodeBody(Node);
4795 Out << "\n";
4796}
4797
4798void AssemblyWriter::writeAllMDNodes() {
4802 Nodes[I.second] = cast(I.first);
4803
4804 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4805 writeMDNode(i, Nodes[i]);
4806 }
4807}
4808
4809void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4810 auto WriterCtx = getContext();
4812}
4813
4814void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4817 return;
4818 }
4819
4822 Out << '(';
4823 TypePrinter.print(Ty, Out);
4824 Out << ')';
4825 }
4826}
4827
4828void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4829 bool InAttrGroup) {
4830 bool FirstAttr = true;
4831 for (const auto &Attr : AttrSet) {
4832 if (!FirstAttr)
4833 Out << ' ';
4834 writeAttribute(Attr, InAttrGroup);
4835 FirstAttr = false;
4836 }
4837}
4838
4839void AssemblyWriter::writeAllAttributeGroups() {
4840 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4841 asVec.resize(Machine.as_size());
4842
4845
4846 for (const auto &I : asVec)
4847 Out << "attributes #" << I.second << " = { "
4848 << I.first.getAsString(true) << " }\n";
4849}
4850
4851void AssemblyWriter::printUseListOrder(const Value *V,
4852 const std::vector &Shuffle) {
4853 bool IsInFunction = Machine.getFunction();
4854 if (IsInFunction)
4855 Out << " ";
4856
4857 Out << "uselistorder";
4858 if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast(V)) {
4859 Out << "_bb ";
4860 writeOperand(BB->getParent(), false);
4861 Out << ", ";
4862 writeOperand(BB, false);
4863 } else {
4864 Out << " ";
4865 writeOperand(V, true);
4866 }
4867 Out << ", { ";
4868
4869 assert(Shuffle.size() >= 2 && "Shuffle too small");
4870 Out << Shuffle[0];
4871 for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4872 Out << ", " << Shuffle[I];
4873 Out << " }\n";
4874}
4875
4876void AssemblyWriter::printUseLists(const Function *F) {
4877 auto It = UseListOrders.find(F);
4878 if (It == UseListOrders.end())
4879 return;
4880
4881 Out << "\n; uselistorder directives\n";
4882 for (const auto &Pair : It->second)
4883 printUseListOrder(Pair.first, Pair.second);
4884}
4885
4886
4887
4888
4889
4891 bool ShouldPreserveUseListOrder,
4892 bool IsForDebug) const {
4895 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4896 IsForDebug,
4897 ShouldPreserveUseListOrder);
4898 W.printFunction(this);
4899}
4900
4902 bool ShouldPreserveUseListOrder,
4903 bool IsForDebug) const {
4906 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4907 IsForDebug,
4908 ShouldPreserveUseListOrder);
4909 W.printBasicBlock(this);
4910}
4911
4913 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4916 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4917 ShouldPreserveUseListOrder);
4918 W.printModule(this);
4919}
4920
4924 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4925 W.printNamedMDNode(this);
4926}
4927
4929 bool IsForDebug) const {
4930 std::optional LocalST;
4933 SlotTable = ST;
4934 else {
4936 SlotTable = &*LocalST;
4937 }
4938
4940 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4941 W.printNamedMDNode(this);
4942}
4943
4946 ROS << " = comdat ";
4947
4950 ROS << "any";
4951 break;
4953 ROS << "exactmatch";
4954 break;
4956 ROS << "largest";
4957 break;
4959 ROS << "nodeduplicate";
4960 break;
4962 ROS << "samesize";
4963 break;
4964 }
4965
4966 ROS << '\n';
4967}
4968
4970 TypePrinting TP;
4971 TP.print(const_cast<Type*>(this), OS);
4972
4973 if (NoDetails)
4974 return;
4975
4976
4977 if (StructType *STy = dyn_cast(const_cast<Type*>(this)))
4979 OS << " = type ";
4980 TP.printStructBody(STy, OS);
4981 }
4982}
4983
4985 if (const auto *CI = dyn_cast(&I))
4986 if (Function *F = CI->getCalledFunction())
4987 if (F->isIntrinsic())
4988 for (auto &Op : I.operands())
4989 if (auto *V = dyn_cast_or_null(Op))
4990 if (isa(V->getMetadata()))
4991 return true;
4992 return false;
4993}
4994
4996
4998 print(ROS, MST, IsForDebug);
4999}
5000
5002
5004 print(ROS, MST, IsForDebug);
5005}
5006
5008 bool IsForDebug) const {
5010 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5013 auto incorporateFunction = [&](const Function *F) {
5014 if (F)
5016 };
5018 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5019 W.printDbgMarker(*this);
5020}
5021
5023
5025 print(ROS, MST, IsForDebug);
5026}
5027
5029 bool IsForDebug) const {
5031 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5034 auto incorporateFunction = [&](const Function *F) {
5035 if (F)
5037 };
5040 : nullptr);
5041 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5042 W.printDbgVariableRecord(*this);
5043}
5044
5046 bool IsForDebug) const {
5048 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5051 auto incorporateFunction = [&](const Function *F) {
5052 if (F)
5054 };
5056 : nullptr);
5057 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5058 W.printDbgLabelRecord(*this);
5059}
5060
5062 bool ShouldInitializeAllMetadata = false;
5063 if (auto *I = dyn_cast(this))
5065 else if (isa(this) || isa(this))
5066 ShouldInitializeAllMetadata = true;
5067
5069 print(ROS, MST, IsForDebug);
5070}
5071
5073 bool IsForDebug) const {
5075 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5078 auto incorporateFunction = [&](const Function *F) {
5079 if (F)
5081 };
5082
5083 if (const Instruction *I = dyn_cast(this)) {
5084 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
5085 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
5086 W.printInstruction(*I);
5087 } else if (const BasicBlock *BB = dyn_cast(this)) {
5088 incorporateFunction(BB->getParent());
5089 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
5090 W.printBasicBlock(BB);
5091 } else if (const GlobalValue *GV = dyn_cast(this)) {
5092 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
5093 if (const GlobalVariable *V = dyn_cast(GV))
5094 W.printGlobal(V);
5095 else if (const Function *F = dyn_cast(GV))
5096 W.printFunction(F);
5097 else if (const GlobalAlias *A = dyn_cast(GV))
5098 W.printAlias(A);
5099 else if (const GlobalIFunc *I = dyn_cast(GV))
5100 W.printIFunc(I);
5101 else
5103 } else if (const MetadataAsValue *V = dyn_cast(this)) {
5105 } else if (const Constant *C = dyn_cast(this)) {
5106 TypePrinting TypePrinter;
5107 TypePrinter.print(C->getType(), OS);
5108 OS << ' ';
5109 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
5111 } else if (isa(this) || isa(this)) {
5112 this->printAsOperand(OS, true, MST);
5113 } else {
5115 }
5116}
5117
5118
5119
5120
5123 if (V.hasName() || isa(V) ||
5124 (!isa(V) && !isa(V))) {
5125 AsmWriterContext WriterCtx(nullptr, Machine, M);
5127 return true;
5128 }
5129 return false;
5130}
5131
5134 TypePrinting TypePrinter(MST.getModule());
5135 if (PrintType) {
5136 TypePrinter.print(V.getType(), O);
5137 O << ' ';
5138 }
5139
5140 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
5142}
5143
5145 const Module *M) const {
5146 if (!M)
5148
5149 if (!PrintType)
5151 return;
5152
5154 M, isa(this));
5157}
5158
5161 if (!PrintType)
5163 return;
5164
5166}
5167
5168
5170 AsmWriterContext &WriterCtx) {
5173
5174 auto *N = dyn_cast(&MD);
5175 if ( || isa(MD))
5176 return;
5177
5178 OS << " = ";
5180}
5181
5182namespace {
5183struct MDTreeAsmWriterContext : public AsmWriterContext {
5184 unsigned Level;
5185
5186 using EntryTy = std::pair<unsigned, std::string>;
5188
5189
5191
5193
5194 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
5196 : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
5197
5198 void onWriteMetadataAsOperand(const Metadata *MD) override {
5199 if (!Visited.insert(MD).second)
5200 return;
5201
5202 std::string Str;
5204 ++Level;
5205
5206
5207 Buffer.emplace_back(std::make_pair(Level, ""));
5208 unsigned InsertIdx = Buffer.size() - 1;
5209
5211 Buffer[InsertIdx].second = std::move(SS.str());
5212 --Level;
5213 }
5214
5215 ~MDTreeAsmWriterContext() {
5216 for (const auto &Entry : Buffer) {
5217 MainOS << "\n";
5218 unsigned NumIndent = Entry.first * 2U;
5219 MainOS.indent(NumIndent) << Entry.second;
5220 }
5221 }
5222};
5223}
5224
5227 bool OnlyAsOperand, bool PrintAsTree = false) {
5229
5230 TypePrinting TypePrinter(M);
5231
5232 std::unique_ptr WriterCtx;
5233 if (PrintAsTree && !OnlyAsOperand)
5234 WriterCtx = std::make_unique(
5235 &TypePrinter, MST.getMachine(), M, OS, &MD);
5236 else
5237 WriterCtx =
5238 std::make_unique(&TypePrinter, MST.getMachine(), M);
5239
5241
5242 auto *N = dyn_cast(&MD);
5243 if (OnlyAsOperand || || isa(MD))
5244 return;
5245
5246 OS << " = ";
5248}
5249
5253}
5254
5256 const Module *M) const {
5258}
5259
5261 bool ) const {
5264}
5265
5267 const Module *M, bool ) const {
5269}
5270
5274 true);
5275}
5276
5278 const Module *M) const {
5280 true);
5281}
5282
5286 AssemblyWriter W(OS, SlotTable, this, IsForDebug);
5287 W.printModuleSummaryIndex();
5288}
5289
5291 unsigned UB) const {
5293 if (!ST)
5294 return;
5295
5296 for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
5297 if (I.second >= LB && I.second < UB)
5298 L.push_back(std::make_pair(I.second, I.first));
5299}
5300
5301#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5302
5305
5306
5310 dbgs() << '\n';
5311}
5312
5313
5316
5317
5320
5321
5325 false, true);
5326}
5327
5328
5331
5332
5335
5338
5342 dbgs() << '\n';
5343}
5344
5347
5351 dbgs() << '\n';
5352}
5353
5354
5357#endif
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static void writeDIMacro(raw_ostream &Out, const DIMacro *N, AsmWriterContext &WriterCtx)
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, AsmWriterContext &WriterCtx)
static void writeDIGlobalVariableExpression(raw_ostream &Out, const DIGlobalVariableExpression *N, AsmWriterContext &WriterCtx)
MapVector< const Value *, unsigned > OrderMap
static void PrintCallingConv(unsigned cc, raw_ostream &Out)
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, AsmWriterContext &WriterCtx)
static const char * getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, ModuleSlotTracker &MST, const Module *M, bool OnlyAsOperand, bool PrintAsTree=false)
static void WriteOptimizationInfo(raw_ostream &Out, const User *U)
static void writeDIStringType(raw_ostream &Out, const DIStringType *N, AsmWriterContext &WriterCtx)
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)
static std::vector< unsigned > predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM)
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, AsmWriterContext &WriterCtx)
static void orderValue(const Value *V, OrderMap &OM)
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, formatted_raw_ostream &Out)
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix)
Turn the specified name into an 'LLVM name', which is either prefixed with % (if the string only cont...
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)
static const char * getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)
static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef< int > Mask)
static void writeDIModule(raw_ostream &Out, const DIModule *N, AsmWriterContext &WriterCtx)
static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &)
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, AsmWriterContext &WriterCtx)
static bool isReferencingMDNode(const Instruction &I)
static void writeDILabel(raw_ostream &Out, const DILabel *N, AsmWriterContext &WriterCtx)
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, AsmWriterContext &Ctx)
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, AsmWriterContext &WriterCtx)
static void printMetadataIdentifier(StringRef Name, formatted_raw_ostream &Out)
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, AsmWriterContext &WriterCtx)
static const Module * getModuleFromDPI(const DbgMarker *Marker)
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, ModuleSlotTracker &MST)
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, AsmWriterContext &WriterCtx)
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, formatted_raw_ostream &Out)
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, AsmWriterContext &WriterCtx)
static const char * getSummaryKindName(GlobalValueSummary::SummaryKind SK)
static OrderMap orderModule(const Module *M)
static const char * getVisibilityName(GlobalValue::VisibilityTypes Vis)
static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD, AsmWriterContext &WriterCtx)
Recursive version of printMetadataImpl.
static SlotTracker * createSlotTracker(const Value *V)
static void WriteAPFloatInternal(raw_ostream &Out, const APFloat &APF)
static void writeDILocation(raw_ostream &Out, const DILocation *DL, AsmWriterContext &WriterCtx)
static void writeDINamespace(raw_ostream &Out, const DINamespace *N, AsmWriterContext &WriterCtx)
static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, AsmWriterContext &WriterCtx)
static UseListOrderMap predictUseListOrder(const Module *M)
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, AsmWriterContext &WriterCtx)
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, AsmWriterContext &WriterCtx)
static std::string getLinkageName(GlobalValue::LinkageTypes LT)
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, AsmWriterContext &)
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, AsmWriterContext &WriterCtx)
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, AsmWriterContext &WriterCtx)
static const char * getTTResKindName(TypeTestResolution::Kind K)
static void writeDITemplateTypeParameter(raw_ostream &Out, const DITemplateTypeParameter *N, AsmWriterContext &WriterCtx)
static const char * getImportTypeName(GlobalValueSummary::ImportKind IK)
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, AsmWriterContext &WriterCtx)
static const Module * getModuleFromVal(const Value *V)
static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, raw_ostream &Out)
static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N, AsmWriterContext &WriterCtx)
static void writeDISubrange(raw_ostream &Out, const DISubrange *N, AsmWriterContext &WriterCtx)
static void PrintVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out)
static void writeDILexicalBlockFile(raw_ostream &Out, const DILexicalBlockFile *N, AsmWriterContext &WriterCtx)
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, AsmWriterContext &)
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, AsmWriterContext &WriterCtx)
static void writeDIExpression(raw_ostream &Out, const DIExpression *N, AsmWriterContext &WriterCtx)
static void PrintDSOLocation(const GlobalValue &GV, formatted_raw_ostream &Out)
static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL, AsmWriterContext &WriterCtx)
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, AsmWriterContext &WriterCtx)
static void maybePrintComdat(formatted_raw_ostream &Out, const GlobalObject &GO)
static bool printWithoutType(const Value &V, raw_ostream &O, SlotTracker *Machine, const Module *M)
Print without a type, skipping the TypePrinting object.
static void writeDIArgList(raw_ostream &Out, const DIArgList *N, AsmWriterContext &WriterCtx, bool FromValue=false)
static void writeDITemplateValueParameter(raw_ostream &Out, const DITemplateValueParameter *N, AsmWriterContext &WriterCtx)
static const Value * skipMetadataWrapper(const Value *V)
Look for a value that might be wrapped as metadata, e.g.
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, AsmWriterContext &WriterCtx)
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
COFF::MachineTypes Machine
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil pretty DXIL Metadata Pretty Printer
Looks at all the uses of the given value Returns the Liveness deduced from the uses of this value Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses If the result is MaybeLiveUses might be modified but its content should be ignored(since it might not be complete). DeadArgumentEliminationPass
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file contains an interface for creating legacy passes to print out IR in various granularities.
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
ModuleSummaryIndex.h This file contains the declarations the classes that hold the module index and s...
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file provides utility classes that use RAII to save and restore values.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallString class.
This file defines the SmallVector class.
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for SNaN values.
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
double convertToDouble() const
Converts this APFloat to host double value.
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const
const fltSemantics & getSemantics() const
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
uint64_t getZExtValue() const
Get zero extended value.
APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Abstract interface of slot tracker storage.
virtual ~AbstractSlotTrackerStorage()
Alias summary information.
const GlobalValueSummary & getAliasee() const
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
virtual ~AssemblyAnnotationWriter()
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
static StringRef getOperationName(BinOp Op)
AttributeSet getFnAttrs() const
The function attributes are returned.
std::string getAsString(unsigned Index, bool InAttrGrp=false) const
Return the attributes at the index as a string.
bool hasRetAttrs() const
Return true if attributes exist for the return value.
AttributeSet getAttributes(unsigned Index) const
The attributes for the specified index are returned.
bool hasFnAttrs() const
Return true the attributes exist for the function.
AttributeSet getParamAttrs(unsigned ArgNo) const
The attributes for the argument or parameter at the given index are returned.
bool hasAttributes() const
Return true if attributes exists in this set.
std::string getAsString(bool InAttrGrp=false) const
The Attribute is converted to a string of equivalent mnemonic.
Attribute::AttrKind getKindAsEnum() const
Return the attribute's kind as an enum (Attribute::AttrKind).
static StringRef getNameFromAttrKind(Attribute::AttrKind AttrKind)
bool isTypeAttribute() const
Return true if the attribute is a type attribute.
Type * getValueAsType() const
Return the attribute's value as a Type.
LLVM Basic Block Representation.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const Function * getParent() const
Return the enclosing method, or null if none.
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
The address of a basic block.
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
void print(raw_ostream &OS, bool IsForDebug=false) const
StringRef getName() const
@ Largest
The linker will choose the largest COMDAT.
@ SameSize
The data referenced by the COMDAT must be the same size.
@ Any
The linker may choose any COMDAT.
@ NoDeduplicate
No deduplication is performed.
@ ExactMatch
The data referenced by the COMDAT must be the same.
SelectionKind getSelectionKind() const
ConstantArray - Constant Array Declarations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
A constant value that is initialized with an expression using other constant values.
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
A signed pointer, in the ptrauth sense.
This class represents a range of values.
APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
This is an important base class in LLVM.
Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
List of ValueAsMetadata, to be used as an argument to a dbg.value intrinsic.
Basic type, like 'int' or 'float'.
static const char * nameTableKindString(DebugNameTableKind PK)
static const char * emissionKindString(DebugEmissionKind EK)
A lightweight wrapper around an expression operand.
A pair of DIGlobalVariable and DIExpression.
An imported module (C++ using directive or similar).
Macro Info DWARF-like metadata node.
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Tagged DWARF-like metadata node.
static DIFlags splitFlags(DIFlags Flags, SmallVectorImpl< DIFlags > &SplitFlags)
Split up a flags bitfield.
static StringRef getFlagString(DIFlags Flag)
String type, Fortran CHARACTER(n)
static DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl< DISPFlags > &SplitFlags)
Split up a flags bitfield for easier printing.
static StringRef getFlagString(DISPFlags Flag)
DISPFlags
Debug info subprogram flags.
Type array for a subprogram.
This class represents an Operation in the Expression.
Records a position in IR for a source label (DILabel).
void print(raw_ostream &O, bool IsForDebug=false) const
Per-instruction record of debug-info.
Instruction * MarkedInstr
Link back to the Instruction that owns this marker.
void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on DbgMarker.
const BasicBlock * getParent() const
simple_ilist< DbgRecord > StoredDbgRecords
List of DbgRecords, the non-instruction equivalent of llvm.dbg.
Base class for non-instruction debug metadata records that have positions within IR.
void print(raw_ostream &O, bool IsForDebug=false) const
DebugLoc getDebugLoc() const
DbgMarker * Marker
Marker that this DbgRecord is linked into.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
void print(raw_ostream &O, bool IsForDebug=false) const
MDNode * getRawExpression() const
MDNode * getRawAddressExpression() const
Metadata * getRawAssignID() const
MDNode * getRawVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
Metadata * getRawAddress() const
MDNode * getAsMDNode() const
Return this as a bar MDNode.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Utility class for floating point operations which can have information about relaxed accuracy require...
An instruction for ordering other memory operations.
Function summary information to aid decisions and implementation of importing.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the function to an output stream with an optional AssemblyAnnotationWriter.
Represents calls to the gc.relocate intrinsic.
Value * getBasePtr() const
Value * getDerivedPtr() const
Generic tagged DWARF-like metadata node.
const Constant * getAliasee() const
const Constant * getResolver() const
StringRef getSection() const
Get the custom section of this global if it has one.
MaybeAlign getAlign() const
Returns the alignment of the given variable or function.
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
const Comdat * getComdat() const
bool hasSection() const
Check if this global has a custom object file section.
Function and variable summary information to aid decisions and implementation of importing.
SummaryKind
Sububclass discriminator (for dyn_cast<> et al.)
bool hasPartition() const
const SanitizerMetadata & getSanitizerMetadata() const
bool hasExternalLinkage() const
VisibilityTypes getVisibility() const
bool isImplicitDSOLocal() const
LinkageTypes getLinkage() const
ThreadLocalMode getThreadLocalMode() const
DLLStorageClassTypes
Storage classes of global values for PE targets.
@ DLLExportStorageClass
Function to be accessible from DLL.
@ DLLImportStorageClass
Function to be imported from DLL.
bool hasSanitizerMetadata() const
GUID getGUID() const
Return a 64-bit global unique ID constructed from global value name (i.e.
StringRef getPartition() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
VisibilityTypes
An enumeration for the kinds of visibility of global values.
@ DefaultVisibility
The GV is visible.
@ HiddenVisibility
The GV is hidden.
@ ProtectedVisibility
The GV is protected.
bool isMaterializable() const
If this function's Module is being lazily streamed in functions from disk or some other source,...
UnnamedAddr getUnnamedAddr() const
LinkageTypes
An enumeration for the kinds of linkage for global values.
@ PrivateLinkage
Like Internal, but omit from symbol table.
@ CommonLinkage
Tentative definitions.
@ InternalLinkage
Rename collisions when linking (static functions).
@ LinkOnceAnyLinkage
Keep one copy of function when linking (inline)
@ WeakODRLinkage
Same, but only replaced by something equivalent.
@ ExternalLinkage
Externally visible function.
@ WeakAnyLinkage
Keep one copy of named function when linking (weak)
@ AppendingLinkage
Special purpose, only applies to global arrays.
@ AvailableExternallyLinkage
Available for inspection, not emission.
@ ExternalWeakLinkage
ExternalWeak linkage description.
@ LinkOnceODRLinkage
Same, but only replaced by something equivalent.
DLLStorageClassTypes getDLLStorageClass() const
Type * getValueType() const
Global variable summary information to aid decisions and implementation of importing.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isExternallyInitialized() const
bool hasInitializer() const
Definitions have initializers, declarations don't.
AttributeSet getAttributes() const
Return the attribute set for this global.
std::optional< CodeModel::Model > getCodeModel() const
Get the custom code model of this global if it has one.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
This instruction inserts a struct field of array element value into an aggregate value.
This is an important class for using LLVM in a threaded context.
void getSyncScopeNames(SmallVectorImpl< StringRef > &SSNs) const
getSyncScopeNames - Populates client supplied SmallVector with synchronization scope names registered...
The landingpad instruction holds all of the information necessary to generate correct exception handl...
An instruction for reading from memory.
void printTree(raw_ostream &OS, const Module *M=nullptr) const
Print in tree shape.
void dumpTree() const
User-friendly dump in tree shape.
This class implements a map that also provides access to all stored values in a deterministic order.
Manage lifetime of a slot tracker for printing IR.
std::vector< std::pair< unsigned, const MDNode * > > MachineMDNodeListType
const Module * getModule() const
ModuleSlotTracker(SlotTracker &Machine, const Module *M, const Function *F=nullptr)
Wrap a preinitialized SlotTracker.
virtual ~ModuleSlotTracker()
Destructor to clean up storage.
int getLocalSlot(const Value *V)
Return the slot number of the specified local value.
void collectMDNodes(MachineMDNodeListType &L, unsigned LB, unsigned UB) const
SlotTracker * getMachine()
Lazily creates a slot tracker.
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
void incorporateFunction(const Function &F)
Incorporate the given function.
Class to hold module path string table and global value map, and encapsulate methods for operating on...
static constexpr const char * getRegularLTOModuleName()
const StringMap< ModuleHash > & modulePaths() const
Table of modules, containing module hash and id.
void dump() const
Dump to stderr (for debugging).
void print(raw_ostream &OS, bool IsForDebug=false) const
Print to an output stream.
A Module instance is used to store all the information related to an LLVM module.
iterator_range< ifunc_iterator > ifuncs()
iterator_range< named_metadata_iterator > named_metadata()
iterator_range< alias_iterator > aliases()
iterator_range< global_iterator > globals()
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the module to an output stream with an optional AssemblyAnnotationWriter.
void dump() const
Dump the module to stderr (for debugging).
StringRef getName() const
void print(raw_ostream &ROS, bool IsForDebug=false) const
MDNode * getOperand(unsigned i) const
unsigned getNumOperands() const
Module * getParent()
Get the module that holds this named metadata collection.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
An or instruction, which can be marked as "disjoint", indicating that the inputs don't have a 1 in th...
A udiv or sdiv instruction, which can be marked as "exact", indicating that no bits are destroyed.
Interface for looking up the initializer for a variable name, used by Init::resolveReferences.
A vector that has set insertion semantics.
This instruction constructs a fixed permutation of two input vectors.
This class provides computation of slot numbers for LLVM Assembly writing.
int getMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
int getTypeIdCompatibleVtableSlot(StringRef Id)
int getModulePathSlot(StringRef Path)
unsigned mdn_size() const
SlotTracker(const SlotTracker &)=delete
void purgeFunction()
After calling incorporateFunction, use this method to remove the most recently incorporated function ...
int getTypeIdSlot(StringRef Id)
void initializeIfNeeded()
These functions do the actual initialization.
int getGlobalSlot(const GlobalValue *V)
getGlobalSlot - Get the slot number of a global value.
const Function * getFunction() const
unsigned getNextMetadataSlot() override
void incorporateFunction(const Function *F)
If you'd like to deal with a function instead of just a module, use this method to get its data into ...
int getLocalSlot(const Value *V)
Return the slot number of the specified value in it's type plane.
int getAttributeGroupSlot(AttributeSet AS)
SlotTracker(const Module *M, bool ShouldInitializeAllMetadata=false)
Construct from a module.
void createMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
SlotTracker & operator=(const SlotTracker &)=delete
int getGUIDSlot(GlobalValue::GUID GUID)
int initializeIndexIfNeeded()
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
iterator find(StringRef Key)
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
Class to represent struct types.
ArrayRef< Type * > elements() const
unsigned getNumElements() const
Random access to the elements.
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition.
bool isOpaque() const
Return true if this is a type with an identity that has no body specified yet.
StringRef getName() const
Return the name for this struct type if it has an identity.
Class to represent target extensions types, which are generally unintrospectable from target-independ...
ArrayRef< Type * > type_params() const
Return the type parameters for this particular target extension type.
ArrayRef< unsigned > int_params() const
Return the integer parameters for this particular target extension type.
TypeFinder - Walk over a module, identifying all of the types that are used by the module.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ X86_AMXTyID
AMX vectors (8192 bits, X86 specific)
@ TypedPointerTyID
Typed pointer used by some GPU targets.
@ HalfTyID
16-bit floating point type
@ TargetExtTyID
Target extension type.
@ VoidTyID
type with no size
@ ScalableVectorTyID
Scalable SIMD vector type.
@ FloatTyID
32-bit floating point type
@ IntegerTyID
Arbitrary bit width integers.
@ FixedVectorTyID
Fixed width SIMD vector type.
@ BFloatTyID
16-bit floating point type (7-bit significand)
@ DoubleTyID
64-bit floating point type
@ X86_FP80TyID
80-bit floating point type (X87)
@ PPC_FP128TyID
128-bit floating point type (two 64-bits, PowerPC)
@ FP128TyID
128-bit floating point type (112-bit significand)
void print(raw_ostream &O, bool IsForDebug=false, bool NoDetails=false) const
Print the current type.
StringRef getTargetExtName() const
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeID getTypeID() const
Return the type id for the type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
A few GPU targets, such as DXIL and SPIR-V, have typed pointers.
Type * getElementType() const
unsigned getAddressSpace() const
Return the address space of the Pointer type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
StringRef getName() const
Return a constant reference to the value's name.
void dump() const
Support for debugging, callable in GDB: V->dump()
formatted_raw_ostream - A raw_ostream that wraps another one and keeps track of line and column posit...
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
A raw_ostream that writes to an std::string.
StringRef LanguageString(unsigned Language)
StringRef AttributeEncodingString(unsigned Encoding)
StringRef ConventionString(unsigned Convention)
StringRef MacinfoString(unsigned Encoding)
StringRef OperationEncodingString(unsigned Encoding)
StringRef TagString(unsigned Tag)
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
@ AArch64_VectorCall
Used between AArch64 Advanced SIMD functions.
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
@ RISCV_VectorCall
Calling convention used for RISC-V V-extension.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AVR_SIGNAL
Used for AVR signal routines.
@ Swift
Calling convention for Swift.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AArch64_SVE_VectorCall
Used between AArch64 SVE functions.
@ ARM_APCS
ARM Procedure Calling Standard (obsolete, but still used on some targets).
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
@ AVR_INTR
Used for AVR interrupt routines.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ DUMMY_HHVM
Placeholders for HHVM calling conventions (deprecated, removed).
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ ARM_AAPCS
ARM Architecture Procedure Calling Standard calling convention (aka EABI).
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
Preserve X2-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ CXX_FAST_TLS
Used for access functions.
@ X86_INTR
x86 hardware interrupt context.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
Preserve X0-X13, X19-X29, SP, Z0-Z31, P0-P15.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1
Preserve X1-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ X86_ThisCall
Similar to X86_StdCall.
@ PTX_Device
Call to a PTX device function.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ X86_StdCall
stdcall is mostly used by the Win32 API.
@ SPIR_FUNC
Used for SPIR non-kernel device functions.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ MSP430_INTR
Used for MSP430 interrupt routines.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ Intel_OCL_BI
Used for Intel OpenCL built-ins.
@ PreserveNone
Used for runtime calls that preserves none general registers.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ PTX_Kernel
Call to a PTX kernel. Passes all arguments in parameter space.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
@ GRAAL
Used by GraalVM. Two additional registers are reserved.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
@ X86_RegCall
Register calling convention used for parameters transfer optimization.
@ M68k_RTD
Used for M68k rtd-based CC (similar to X86's stdcall).
@ C
The default llvm calling convention, compatible with C.
@ X86_FastCall
'fast' analog of X86_StdCall.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ System
Synchronized with respect to all concurrently executing threads.
@ DW_OP_LLVM_convert
Only used in LLVM metadata.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto pred_end(const MachineBasicBlock *BB)
const char * getHotnessName(CalleeInfo::HotnessType HT)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
const char * toIRString(AtomicOrdering ao)
String used by LLVM IR to represent atomic ordering.
void sort(IteratorTy Start, IteratorTy End)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
FormattedNumber format_hex_no_prefix(uint64_t N, unsigned Width, bool Upper=false)
format_hex_no_prefix - Output N as a fixed width hexadecimal.
constexpr int PoisonMaskElem
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Ref
The access may reference the value stored in memory.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
auto pred_begin(const MachineBasicBlock *BB)
const char * toString(DWARFSectionKind Kind)
@ Default
The result values are uniform if and only if all operands are uniform.
std::vector< TypeIdOffsetVtableInfo > TypeIdCompatibleVtableInfo
List of vtable definitions decorated by a particular type identifier, and their corresponding offsets...
void printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name)
Print out a name of an LLVM value without any prefixes.
static const fltSemantics & IEEEsingle() LLVM_READNONE
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & PPCDoubleDouble() LLVM_READNONE
static const fltSemantics & x87DoubleExtended() LLVM_READNONE
static const fltSemantics & IEEEquad() LLVM_READNONE
static const fltSemantics & IEEEdouble() LLVM_READNONE
static const fltSemantics & IEEEhalf() LLVM_READNONE
static const fltSemantics & BFloat() LLVM_READNONE
A single checksum, represented by a Kind and a Value (a string).
T Value
The string value of the checksum.
StringRef getKindAsString() const
All type identifier related information.
std::vector< ConstVCall > TypeCheckedLoadConstVCalls
std::vector< VFuncId > TypeCheckedLoadVCalls
std::vector< ConstVCall > TypeTestAssumeConstVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
std::vector< GlobalValue::GUID > TypeTests
List of type identifiers used by this function in llvm.type.test intrinsics referenced by something o...
std::vector< VFuncId > TypeTestAssumeVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
An "identifier" for a virtual function.
Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield.
unsigned DSOLocal
Indicates that the linker resolved the symbol to a definition from within the same linkage unit.
unsigned CanAutoHide
In the per-module summary, indicates that the global value is linkonce_odr and global unnamed addr (s...
unsigned ImportType
This field is written by the ThinLTO indexing step to postlink combined summary.
unsigned NotEligibleToImport
Indicate if the global value cannot be imported (e.g.
unsigned Linkage
The linkage type of the associated global value.
unsigned Visibility
Indicates the visibility.
unsigned Live
In per-module summary, indicate that the global value must be considered a live root for index-based ...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
A lightweight accessor for an operand bundle meant to be passed around by value.
StringRef getTagName() const
Return the tag of this operand bundle as a string.
A utility class that uses RAII to save and restore the value of a variable.
std::map< uint64_t, WholeProgramDevirtResolution > WPDRes
Mapping from byte offset to whole-program devirt resolution for that (typeid, byte offset) pair.
Kind
Specifies which kind of type check we should emit for this byte array.
@ Unknown
Unknown (analysis not performed, don't lower)
@ Single
Single element (last example in "Short Inline Bit Vectors")
@ Inline
Inlined bit vector ("Short Inline Bit Vectors")
@ Unsat
Unsatisfiable type (i.e. no global has this type metadata)
@ AllOnes
All-ones bit vector ("Eliminating Bit Vector Checks for All-Ones Bit Vectors")
@ ByteArray
Test a byte array (first example)
unsigned SizeM1BitWidth
Range of size-1 expressed as a bit width.
enum llvm::TypeTestResolution::Kind TheKind
Struct that holds a reference to a particular GUID in a global value summary.
@ UniformRetVal
Uniform return value optimization.
@ VirtualConstProp
Virtual constant propagation.
@ UniqueRetVal
Unique return value optimization.
@ Indir
Just do a regular virtual call.
enum llvm::WholeProgramDevirtResolution::Kind TheKind
std::map< std::vector< uint64_t >, ByArg > ResByArg
Resolutions for calls with all constant integer arguments (excluding the first argument,...
std::string SingleImplName
@ SingleImpl
Single implementation devirtualization.
@ Indir
Just do a regular virtual call.
@ BranchFunnel
When retpoline mitigation is enabled, use a branch funnel that is defined in the merged module.
Function object to check whether the second component of a container supported by std::get (like std:...