LLVM: lib/Transforms/InstCombine/InstCombineCalls.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
47#include "llvm/IR/IntrinsicsAArch64.h"
48#include "llvm/IR/IntrinsicsAMDGPU.h"
49#include "llvm/IR/IntrinsicsARM.h"
50#include "llvm/IR/IntrinsicsHexagon.h"
74#include
75#include
76#include
77#include
78#include
79#include
80
81#define DEBUG_TYPE "instcombine"
83
84using namespace llvm;
86
87STATISTIC(NumSimplified, "Number of library calls simplified");
88
90 "instcombine-guard-widening-window",
92 cl::desc("How wide an instruction window to bypass looking for "
93 "another guard"));
94
95
96
99 if (ITy->getBitWidth() < 32)
101 }
102 return Ty;
103}
104
105
106
107
109 auto *Src = MI->getRawSource();
111 if (!Src->hasOneUse())
112 return false;
114 }
116}
117
120 MaybeAlign CopyDstAlign = MI->getDestAlign();
121 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
122 MI->setDestAlignment(DstAlign);
123 return MI;
124 }
125
127 MaybeAlign CopySrcAlign = MI->getSourceAlign();
128 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
129 MI->setSourceAlignment(SrcAlign);
130 return MI;
131 }
132
133
134
135
136 if ((AA->getModRefInfoMask(MI->getDest()))) {
137
139 return MI;
140 }
141
142
143
145
147 return MI;
148 }
149
150
151
153 if (!MemOpLength) return nullptr;
154
155
156
157
158
160 assert(Size && "0-sized memory transferring should be removed already.");
161
163 return nullptr;
164
165
166
167
168
169 if (MI->isAtomic())
170 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
171 return nullptr;
172
173
175
176
177
178 AAMDNodes AACopyMD = MI->getAAMetadata().adjustForAccess(Size);
179
180 Value *Src = MI->getArgOperand(1);
181 Value *Dest = MI->getArgOperand(0);
183
184 L->setAlignment(*CopySrcAlign);
185 L->setAAMetadata(AACopyMD);
186 MDNode *LoopMemParallelMD =
187 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
188 if (LoopMemParallelMD)
189 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
190 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
191 if (AccessGroupMD)
192 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
193
195
198 if (LoopMemParallelMD)
199 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
200 if (AccessGroupMD)
201 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
203
205
206 L->setVolatile(MT->isVolatile());
208 }
209 if (MI->isAtomic()) {
210
213 }
214
215
217 return MI;
218}
219
221 const Align KnownAlignment =
224 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
225 MI->setDestAlignment(KnownAlignment);
226 return MI;
227 }
228
229
230
231
232 if ((AA->getModRefInfoMask(MI->getDest()))) {
233
235 return MI;
236 }
237
238
239
240
242
244 return MI;
245 }
246
247
251 return nullptr;
253 assert(Len && "0-sized memory setting should be removed already.");
254 const Align Alignment = MI->getDestAlign().valueOrOne();
255
256
257
258
259
260 if (MI->isAtomic() && Alignment < Len)
261 return nullptr;
262
263
265 Value *Dest = MI->getDest();
266
267
268 Constant *FillVal = ConstantInt::get(
274 DbgAssign->replaceVariableLocationOp(FillC, FillVal);
275 }
276
278 if (MI->isAtomic())
280
281
283 return MI;
284 }
285
286 return nullptr;
287}
288
289
290
292 Value *LoadPtr = II.getArgOperand(0);
293 const Align Alignment = II.getParamAlign(0).valueOrOne();
294
295
296
298 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
299 "unmaskedload");
300 L->copyMetadata(II);
301 return L;
302 }
303
304
305
307 II.getDataLayout(), &II, &AC)) {
308 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
309 "unmaskedload");
311 return Builder.CreateSelect(II.getArgOperand(1), LI, II.getArgOperand(2));
312 }
313
314 return nullptr;
315}
316
317
318
319
321 Value *StorePtr = II.getArgOperand(1);
322 Align Alignment = II.getParamAlign(1).valueOrOne();
324 if (!ConstMask)
325 return nullptr;
326
327
330
331
333 StoreInst *S =
334 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
336 return S;
337 }
338
340 return nullptr;
341
342
344 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
346 PoisonElts))
348
349 return nullptr;
350}
351
352
353
354
355
356
357
360 if (!ConstMask)
361 return nullptr;
362
363
364
365
366 if (ConstMask->isAllOnesValue())
367 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
369 const Align Alignment = II.getParamAlign(0).valueOrOne();
370 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
371 Alignment, "load.scalar");
373 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
375 }
376
377 return nullptr;
378}
379
380
381
382
383
384
387 if (!ConstMask)
388 return nullptr;
389
390
393
394
395 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
396
397 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
399 Align Alignment = II.getParamAlign(1).valueOrOne();
400 StoreInst *S = new StoreInst(SplatValue, SplatPtr, false,
401 Alignment);
403 return S;
404 }
405 }
406
407
408 if (ConstMask->isAllOnesValue()) {
409 Align Alignment = II.getParamAlign(1).valueOrOne();
411 ElementCount VF = WideLoadTy->getElementCount();
415 Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
416 StoreInst *S =
417 new StoreInst(Extract, SplatPtr, false, Alignment);
419 return S;
420 }
421 }
423 return nullptr;
424
425
427 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
429 PoisonElts))
432 PoisonElts))
434
435 return nullptr;
436}
437
438
439
440
441
442
443
444
445
448 auto *Arg = II.getArgOperand(0);
449 auto *StrippedArg = Arg->stripPointerCasts();
450 auto *StrippedInvariantGroupsArg = StrippedArg;
452 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
453 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
454 break;
455 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
456 }
457 if (StrippedArg == StrippedInvariantGroupsArg)
458 return nullptr;
459
460 Value *Result = nullptr;
461
462 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
464 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
466 else
468 "simplifyInvariantGroupIntrinsic only handles launder and strip");
469 if (Result->getType()->getPointerAddressSpace() !=
470 II.getType()->getPointerAddressSpace())
472
474}
475
477 assert((II.getIntrinsicID() == Intrinsic::cttz ||
478 II.getIntrinsicID() == Intrinsic::ctlz) &&
479 "Expected cttz or ctlz intrinsic");
480 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
481 Value *Op0 = II.getArgOperand(0);
482 Value *Op1 = II.getArgOperand(1);
484
485
487 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
491 }
492
493 if (II.getType()->isIntOrIntVectorTy(1)) {
494
497
498
499 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
501 }
502
503
506 II.dropUBImplyingAttrsAndMetadata();
508 }
509
511
512 if (IsTZ) {
513
516
517
520
521
524 auto *CttzZext =
527 }
528
529
530
536 }
537
538
539
544
547
548
551 Value *ConstCttz =
553 return BinaryOperator::CreateAdd(ConstCttz, X);
554 }
555
556
559 Value *ConstCttz =
561 return BinaryOperator::CreateSub(ConstCttz, X);
562 }
563
564
567 ConstantInt::get(II.getType(), II.getType()->getScalarSizeInBits());
568 return BinaryOperator::CreateSub(Width, X);
569 }
570 } else {
571
574 Value *ConstCtlz =
576 return BinaryOperator::CreateAdd(ConstCtlz, X);
577 }
578
579
582 Value *ConstCtlz =
584 return BinaryOperator::CreateSub(ConstCtlz, X);
585 }
586
587
592 unsigned BitWidth = Ty->getScalarSizeInBits();
597 }
598 }
599
600
601
603 if (IsTZ)
606 ConstantInt::get(R->getType(), R->getType()->getScalarSizeInBits() - 1),
607 R);
610 return BO;
611 }
612
614
615
620
621
622
623
624
625 if (PossibleZeros == DefiniteZeros) {
626 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
628 }
629
630
631
632
637 }
638
639
641 if (BitWidth != 1 && .hasRetAttr(Attribute::Range) &&
642 .getMetadata(LLVMContext::MD_range)) {
645 II.addRangeRetAttr(Range);
646 return &II;
647 }
648
649 return nullptr;
650}
651
653 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
654 "Expected ctpop intrinsic");
656 unsigned BitWidth = Ty->getScalarSizeInBits();
657 Value *Op0 = II.getArgOperand(0);
659
660
661
664
665
670
671
678 }
679
680
686 }
687
688
689
693 }
694
697
698
699
700
701
702
703 if ((~Known.Zero).isPowerOf2())
704 return BinaryOperator::CreateLShr(
705 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
706
707
708
709
714 Ty);
715
716
719 II.getRange().value_or(ConstantRange::getFull(BitWidth));
720
723
727
730
731 if (Range != OldRange) {
732 II.addRangeRetAttr(Range);
733 return &II;
734 }
735 }
736
737 return nullptr;
738}
739
740
741
742
743
746
748 if ()
749 return nullptr;
750
752 unsigned NumElts = VecTy->getNumElements();
753
754
755 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
756 return nullptr;
757
758 int Indexes[8];
759
760 for (unsigned I = 0; I < NumElts; ++I) {
761 Constant *COp = C->getAggregateElement(I);
762
764 return nullptr;
765
767
768
769 if ((unsigned)Indexes[I] >= NumElts)
770 return nullptr;
771 }
772
773 auto *V1 = II.getArgOperand(0);
775 return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes));
776}
777
778
779
781 unsigned NumOperands) {
782 assert(I.arg_size() >= NumOperands && "Not enough operands");
783 assert(E.arg_size() >= NumOperands && "Not enough operands");
784 for (unsigned i = 0; i < NumOperands; i++)
785 if (I.getArgOperand(i) != E.getArgOperand(i))
786 return false;
787 return true;
788}
789
790
791
792
793
794
795
796
797
798
799static bool
801 std::function<bool(const IntrinsicInst &)> IsStart) {
802
803
804
806 for (; BI != BE; ++BI) {
808 if (I->isDebugOrPseudoInst() ||
810 continue;
811 if (IsStart(*I)) {
815 return true;
816 }
817
818 continue;
819 }
820 }
821 break;
822 }
823
824 return false;
825}
826
829
830
831 return II.getIntrinsicID() == Intrinsic::vastart ||
832 (II.getIntrinsicID() == Intrinsic::vacopy &&
833 I.getArgOperand(0) != II.getArgOperand(1));
834 });
835 return nullptr;
836}
837
839 assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
840 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
842 Call.setArgOperand(0, Arg1);
843 Call.setArgOperand(1, Arg0);
844 return &Call;
845 }
846 return nullptr;
847}
848
849
850
858
860InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
862 Value *OperationResult = nullptr;
867
868
869 for (User *U : WO->users()) {
871 continue;
872
873 for (auto &AssumeVH : AC.assumptionsFor(U)) {
874 if (!AssumeVH)
875 continue;
878 continue;
880 true))
881 continue;
884 Result->takeName(WO);
887 Inst->setHasNoSignedWrap();
888 else
889 Inst->setHasNoUnsignedWrap();
890 }
893 }
894 }
895
896 return nullptr;
897}
898
900 Ty = Ty->getScalarType();
901 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
902}
903
905 Ty = Ty->getScalarType();
906 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
907}
908
909
910
911
914 switch (static_cast<unsigned>(Mask)) {
918 break;
922 break;
926 break;
930 break;
934 break;
938 break;
942 break;
946 break;
950 break;
954 break;
958 break;
962 break;
963 default:
964 break;
965 }
966
968}
969
971 Value *Src0 = II.getArgOperand(0);
972 Value *Src1 = II.getArgOperand(1);
978 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
979
980 const bool IsStrict =
981 II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP);
982
985
986
987 II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask)));
989 }
990
995 }
996
997 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) &&
998 (IsOrdered || IsUnordered) && !IsStrict) {
999
1000
1001
1002
1006 if (OrderedInvertedMask == fcInf)
1008
1009 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
1010 Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf);
1013 }
1014
1016 (IsOrdered || IsUnordered) && !IsStrict) {
1017
1018
1019
1020
1023 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf)
1024 : Builder.CreateFCmpOEQ(Src0, Inf);
1025
1028 }
1029
1030 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
1031 (IsOrdered || IsUnordered) && !IsStrict) {
1032
1033
1034
1035
1037 OrderedInvertedMask == fcNegInf);
1038 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf)
1039 : Builder.CreateFCmpONE(Src0, Inf);
1042 }
1043
1044 if (Mask == fcNan && !IsStrict) {
1045
1046
1051 }
1052
1054
1059 }
1060
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076 if (!IsStrict && (IsOrdered || IsUnordered) &&
1081
1084 Src0, Zero);
1085
1088 }
1089
1091
1092
1093
1094
1096 II.setArgOperand(
1098 return &II;
1099 }
1100
1101
1102
1103
1106
1107 return nullptr;
1108}
1109
1113 return false;
1115 return true;
1116
1120
1121 return std::nullopt;
1122}
1123
1126 if (std::optional Sign = getKnownSign(Op, SQ))
1127 return Sign;
1128
1132
1133 return std::nullopt;
1134}
1135
1136
1139 std::optional Known1 = getKnownSign(Op1, SQ);
1140 if (!Known1)
1141 return false;
1142 std::optional Known0 = getKnownSign(Op0, SQ);
1143 if (!Known0)
1144 return false;
1145 return *Known0 == *Known1;
1146}
1147
1148
1149
1153 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1154 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1155 "Expected a min or max intrinsic");
1156
1157
1158 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1160 const APInt *C0, *C1;
1163 return nullptr;
1164
1165
1166 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1168 if ((IsSigned && ->hasNoSignedWrap()) ||
1169 (!IsSigned && ->hasNoUnsignedWrap()))
1170 return nullptr;
1171
1172
1173
1174 bool Overflow;
1176 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
1177 assert(!Overflow && "Expected simplify of min/max");
1178
1179
1180
1181 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
1182 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
1183 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
1184 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
1185}
1186
1189
1190
1191
1192
1194 BinaryOperator *AddSub;
1195 const APInt *MinValue, *MaxValue;
1198 return nullptr;
1199 } else if (match(&MinMax1,
1202 return nullptr;
1203 } else
1204 return nullptr;
1205
1206
1207
1208 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1209 return nullptr;
1210
1211 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1212
1213
1215 return nullptr;
1216
1217
1219 return nullptr;
1220
1221
1223
1225 if (AddSub->getOpcode() == Instruction::Add)
1226 IntrinsicID = Intrinsic::sadd_sat;
1227 else if (AddSub->getOpcode() == Instruction::Sub)
1228 IntrinsicID = Intrinsic::ssub_sat;
1229 else
1230 return nullptr;
1231
1232
1233
1236 return nullptr;
1237
1238
1241 Value *Sat = Builder.CreateIntrinsic(IntrinsicID, NewTy, {AT, BT});
1243}
1244
1245
1246
1247
1248
1251 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1253 const APInt *C0, *C1;
1255 return nullptr;
1256
1258 switch (II->getIntrinsicID()) {
1259 case Intrinsic::smax:
1262 break;
1263 case Intrinsic::smin:
1266 break;
1267 case Intrinsic::umax:
1270 break;
1271 case Intrinsic::umin:
1274 break;
1275 default:
1277 }
1279 return nullptr;
1280
1281
1282
1283 Value *Cmp = Builder.CreateICmp(Pred, X, I1);
1285}
1286
1287
1288
1294 if ()
1295 return nullptr;
1296
1300 return nullptr;
1301
1302
1303
1304
1305
1307 if (InnerMinMaxID != MinMaxID &&
1308 !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) ||
1309 (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) &&
1311 return nullptr;
1312
1314 Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1315 Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1316 return Builder.CreateIntrinsic(InnerMinMaxID, II->getType(),
1317 {LHS->getArgOperand(0), NewC});
1318}
1319
1320
1321
1325
1333 return nullptr;
1334
1335
1338 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1340 return nullptr;
1341
1342
1344 MinMaxID, II->getType());
1345 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1348}
1349
1350
1352
1356 if ( ||
|| LHS->getIntrinsicID() != MinMaxID ||
1357 RHS->getIntrinsicID() != MinMaxID ||
1358 (->hasOneUse() &&
->hasOneUse()))
1359 return nullptr;
1360
1361 Value *A = LHS->getArgOperand(0);
1362 Value *B = LHS->getArgOperand(1);
1363 Value *C = RHS->getArgOperand(0);
1364 Value *D = RHS->getArgOperand(1);
1365
1366
1367 Value *MinMaxOp = nullptr;
1368 Value *ThirdOp = nullptr;
1369 if (LHS->hasOneUse()) {
1370
1371
1373
1374
1375 MinMaxOp = RHS;
1376 ThirdOp = B;
1377 } else if (D == B || C == B) {
1378
1379
1380 MinMaxOp = RHS;
1381 ThirdOp = A;
1382 }
1383 } else {
1384 assert(RHS->hasOneUse() && "Expected one-use operand");
1385
1387
1388
1389 MinMaxOp = LHS;
1390 ThirdOp = C;
1391 } else if (C == A || C == B) {
1392
1393
1394 MinMaxOp = LHS;
1395 ThirdOp = D;
1396 }
1397 }
1398
1399 if (!MinMaxOp || !ThirdOp)
1400 return nullptr;
1401
1406}
1407
1408
1409
1413 ->getCalledFunction()->isSpeculatable())
1414 return nullptr;
1415
1420 return isa(Arg.get()) ||
1421 isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(),
1422 Arg.getOperandNo(), nullptr);
1423 });
1424 if (!NonConstArg ||
1426 return nullptr;
1427
1428
1429
1431 return nullptr;
1432
1433
1435 Type *SrcTy = X->getType();
1436 for (Use &Arg : II->args()) {
1440 else if (match(&Arg,
1442 X->getType() == SrcTy)
1445
1449 else
1450 return nullptr;
1451 } else
1452 return nullptr;
1453 }
1454
1455
1457
1458
1461 Value *NewIntrinsic =
1462 Builder.CreateIntrinsic(ResTy, II->getIntrinsicID(), NewArgs, FPI);
1464}
1465
1466
1467
1470 return nullptr;
1471
1472
1473
1475 return match(V, m_OneUse(m_VecReverse(m_Value())));
1476 }))
1477 return nullptr;
1478
1482 for (Use &Arg : II->args()) {
1484 Arg.getOperandNo(), nullptr))
1492 else
1493 return nullptr;
1494 }
1495
1496
1499 II->getType(), II->getIntrinsicID(), NewArgs, FPI);
1500 return Builder.CreateVectorReverse(NewIntrinsic);
1501}
1502
1503
1504
1505
1506template <Intrinsic::ID IntrID>
1509 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1510 "This helper only supports BSWAP and BITREVERSE intrinsics");
1511
1513
1514
1517 Value *OldReorderX, *OldReorderY;
1519
1520
1521
1522
1523
1527 }
1528
1530 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y);
1532 }
1533
1535 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X);
1537 }
1538 }
1539 return nullptr;
1540}
1541
1542
1543
1545 switch (IID) {
1546 case Intrinsic::smax:
1547 case Intrinsic::smin:
1548 case Intrinsic::umax:
1549 case Intrinsic::umin:
1550 case Intrinsic::maximum:
1551 case Intrinsic::minimum:
1552 case Intrinsic::maximumnum:
1553 case Intrinsic::minimumnum:
1554 case Intrinsic::maxnum:
1555 case Intrinsic::minnum:
1556 return true;
1557 default:
1558 return false;
1559 }
1560}
1561
1562
1563
1564
1565
1566
1571
1572
1573
1574 auto IID = II->getIntrinsicID();
1578 return nullptr;
1579
1580 auto *InvariantBinaryInst =
1584 return InvariantBinaryInst;
1585}
1586
1588 if (!CanReorderLanes)
1589 return nullptr;
1590
1593 return V;
1594
1599 return nullptr;
1600
1601 int Sz = Mask.size();
1603 for (int Idx : Mask) {
1605 return nullptr;
1606 UsedIndices.set(Idx);
1607 }
1608
1609
1610
1611 return UsedIndices.all() ? V : nullptr;
1612}
1613
1614
1615
1616
1617
1618template <Intrinsic::ID IntrID>
1623 static_assert(IntrID == Intrinsic::cttz || IntrID == Intrinsic::ctlz,
1624 "This helper only supports cttz and ctlz intrinsics");
1625
1627 Value *ZeroUndef;
1630 return nullptr;
1631
1632 unsigned BitWidth = I1->getType()->getScalarSizeInBits();
1633 auto LessBitWidth = [BitWidth](auto &C) { return C.ult(BitWidth); };
1635
1636
1637 return nullptr;
1638
1639 Type *Ty = I1->getType();
1641 IntrID == Intrinsic::cttz ? Instruction::Shl : Instruction::LShr,
1642 IntrID == Intrinsic::cttz
1643 ? ConstantInt::get(Ty, 1)
1646 return Builder.CreateBinaryIntrinsic(
1647 IntrID, Builder.CreateOr(CtOp, NewConst),
1649}
1650
1651
1652
1655 switch (ROp) {
1656 case Intrinsic::umax:
1657 case Intrinsic::umin:
1658 if (HasNUW && LOp == Instruction::Add)
1659 return true;
1660 if (HasNUW && LOp == Instruction::Shl)
1661 return true;
1662 return false;
1663 case Intrinsic::smax:
1664 case Intrinsic::smin:
1665 return HasNSW && LOp == Instruction::Add;
1666 default:
1667 return false;
1668 }
1669}
1670
1671
1672
1673
1677 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1679
1682
1683 if (!Op0 || !Op1)
1684 return nullptr;
1685
1687 return nullptr;
1688
1690 return nullptr;
1691
1696
1698 return nullptr;
1699
1704
1705
1706
1710 else
1711 return nullptr;
1712 }
1713
1716 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode, B, D);
1717 NewBinop =
1720 Value *NewIntrinsic = Builder.CreateBinaryIntrinsic(TopLevelOpcode, A, C);
1721 NewBinop =
1723 } else {
1724 return nullptr;
1725 }
1726
1729
1730 return NewBinop;
1731}
1732
1733
1734
1735
1737
1738
1742 SQ.getWithInstruction(&CI)))
1744 }
1745
1748
1749
1750
1753 return &CI;
1754 }
1755
1757 if ()
1758 return visitCallBase(CI);
1759
1760
1761
1763 if (auto NumBytes = MI->getLengthInBytes()) {
1764
1765 if (NumBytes->isZero())
1767
1768
1769
1770 if (MI->isAtomic() &&
1771 (NumBytes->isNegative() ||
1772 (NumBytes->getZExtValue() % MI->getElementSizeInBytes() != 0))) {
1774 assert(MI->getType()->isVoidTy() &&
1775 "non void atomic unordered mem intrinsic");
1777 }
1778 }
1779
1780
1781 if (MI->isVolatile())
1782 return nullptr;
1783
1785
1786 if (MTI->getSource() == MTI->getDest())
1788 }
1789
1790 auto IsPointerUndefined = [MI](Value *Ptr) {
1793 MI->getFunction(),
1795 };
1796 bool SrcIsUndefined = false;
1797
1798
1801 return I;
1802 SrcIsUndefined = IsPointerUndefined(MTI->getRawSource());
1805 return I;
1806 }
1807
1808
1809 if (SrcIsUndefined || IsPointerUndefined(MI->getRawDest())) {
1810 Builder.CreateAssumption(Builder.CreateIsNull(MI->getLength()));
1812 }
1813
1814
1815
1816
1819 if (GVSrc->isConstant()) {
1822 MMI->isAtomic()
1823 ? Intrinsic::memcpy_element_unordered_atomic
1824 : Intrinsic::memcpy;
1830 return II;
1831 }
1832 }
1833 }
1834
1835
1836
1838 auto VWidth = IIFVTy->getNumElements();
1839 APInt PoisonElts(VWidth, 0);
1842 if (V != II)
1844 return II;
1845 }
1846 }
1847
1848 if (II->isCommutative()) {
1849 if (auto Pair = matchSymmetricPair(II->getOperand(0), II->getOperand(1))) {
1852 return II;
1853 }
1854
1856 return NewCall;
1857 }
1858
1859
1860
1861
1862
1866 }
1867
1869 switch (IID) {
1870 case Intrinsic::objectsize: {
1873 &InsertedInstructions)) {
1874 for (Instruction *Inserted : InsertedInstructions)
1877 }
1878 return nullptr;
1879 }
1880 case Intrinsic::abs: {
1881 Value *IIOperand = II->getArgOperand(0);
1882 bool IntMinIsPoison = cast(II->getArgOperand(1))->isOneValue();
1883
1884
1890 }
1893
1895
1896 if (match(IIOperand,
1899 bool NSW =
1900 cast(IIOperand)->hasNoSignedWrap() && IntMinIsPoison;
1901 auto *XY = NSW ? Builder.CreateNSWMul(X, Y) : Builder.CreateMul(X, Y);
1903 }
1904
1905 if (std::optional Known =
1907
1908
1909 if (!*Known)
1911
1912
1913
1914 if (IntMinIsPoison)
1917 }
1918
1919
1920
1922 Value *NarrowAbs =
1923 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1924 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1925 }
1926
1927
1928
1931 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1932
1933 break;
1934 }
1935 case Intrinsic::umin: {
1936 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1937
1939 assert(II->getType()->getScalarSizeInBits() != 1 &&
1940 "Expected simplify of umin with max constant");
1942 Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1944 }
1945
1946 if (Value *FoldedCttz =
1950
1951 if (Value *FoldedCtlz =
1955 [[fallthrough]];
1956 }
1957 case Intrinsic::umax: {
1958 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1961 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1962 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1963 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1964 }
1969 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1970 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1971 }
1972 }
1973
1974
1975
1976
1982 return nullptr;
1983 if (C->isZero())
1984 return nullptr;
1986 return nullptr;
1987
1988 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(X->getType(), 0));
1989 Value *NewSelect =
1990 Builder.CreateSelect(Cmp, ConstantInt::get(X->getType(), 1), A);
1992 };
1993
1994 if (IID == Intrinsic::umax) {
1995 if (Instruction *I = foldMaxMulShift(I0, I1))
1996 return I;
1997 if (Instruction *I = foldMaxMulShift(I1, I0))
1998 return I;
1999 }
2000
2001
2002
2003 [[fallthrough]];
2004 }
2005 case Intrinsic::smax:
2006 case Intrinsic::smin: {
2007 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2010 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
2011 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
2012 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
2013 }
2014
2019 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
2020 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
2021 }
2022 }
2023
2024
2025
2026 const APInt *MinC, *MaxC;
2027 auto CreateCanonicalClampForm = [&](bool IsSigned) {
2028 auto MaxIID = IsSigned ? Intrinsic::smax : Intrinsic::umax;
2029 auto MinIID = IsSigned ? Intrinsic::smin : Intrinsic::umin;
2030 Value *NewMax = Builder.CreateBinaryIntrinsic(
2031 MaxIID, X, ConstantInt::get(X->getType(), *MaxC));
2033 *II, Builder.CreateBinaryIntrinsic(
2034 MinIID, NewMax, ConstantInt::get(X->getType(), *MinC)));
2035 };
2036 if (IID == Intrinsic::smax &&
2040 return CreateCanonicalClampForm(true);
2041 if (IID == Intrinsic::umax &&
2045 return CreateCanonicalClampForm(false);
2046
2047
2048
2049 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
2050 II->getType()->isIntOrIntVectorTy(1)) {
2051 return BinaryOperator::CreateAnd(I0, I1);
2052 }
2053
2054
2055
2056 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
2057 II->getType()->isIntOrIntVectorTy(1)) {
2058 return BinaryOperator::CreateOr(I0, I1);
2059 }
2060
2061
2062
2063
2064
2065
2066 if (IID == Intrinsic::smin) {
2069 Value *Zero = ConstantInt::get(X->getType(), 0);
2071 CI,
2072 Builder.CreateIntrinsic(II->getType(), Intrinsic::scmp, {X, Zero}));
2073 }
2074 }
2075
2076 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2077
2078
2079
2081 (I0->hasOneUse() || I1->hasOneUse())) {
2083 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
2085 }
2086 }
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2103 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
2104 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
2105
2106 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
2108 if (KnownSign == std::nullopt) {
2109 UseOr = false;
2110 UseAndN = false;
2111 } else if (*KnownSign ) {
2112 UseOr ^= true;
2113 UseAndN ^= true;
2115
2116
2117
2120 }
2121 }
2122 if (UseOr)
2123 return BinaryOperator::CreateOr(I0, X);
2124 else if (UseAndN)
2125 return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X));
2126 }
2127
2128
2129
2130
2131
2132
2133
2134
2141 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
2143 }
2144 }
2145 return nullptr;
2146 };
2147
2148 if (Instruction *I = moveNotAfterMinMax(I0, I1))
2149 return I;
2150 if (Instruction *I = moveNotAfterMinMax(I1, I0))
2151 return I;
2152
2154 return I;
2155
2156
2157 const APInt *RHSC;
2160 return BinaryOperator::CreateAnd(Builder.CreateBinaryIntrinsic(IID, X, Y),
2161 ConstantInt::get(II->getType(), *RHSC));
2162
2163
2164
2165
2166
2168
2169
2170
2171 if (I0->hasOneUse() && !I1->hasOneUse())
2173
2174
2175
2176 bool IntMinIsPoison = isKnownNegation(I0, I1, true);
2178 Intrinsic::abs, I0,
2180
2181
2182
2183 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
2184 Abs = Builder.CreateNeg(Abs, "nabs", IntMinIsPoison);
2186 }
2187
2189 return Sel;
2190
2192 return SAdd;
2193
2196
2198 return R;
2199
2201 return NewMinMax;
2202
2203
2209 I0, IsSigned, SQ.getWithInstruction(II));
2211 if (LHS_CR.icmp(Pred, *RHSC))
2215 ConstantInt::get(II->getType(), *RHSC));
2216 }
2217 }
2218
2221
2222 break;
2223 }
2224 case Intrinsic::scmp: {
2225 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
2226 Value *LHS, *RHS;
2229 CI,
2230 Builder.CreateIntrinsic(II->getType(), Intrinsic::scmp, {LHS, RHS}));
2231 break;
2232 }
2233 case Intrinsic::bitreverse: {
2234 Value *IIOperand = II->getArgOperand(0);
2235
2238 X->getType()->isIntOrIntVectorTy(1)) {
2239 Type *Ty = II->getType();
2243 }
2244
2247 return crossLogicOpFold;
2248
2249 break;
2250 }
2251 case Intrinsic::bswap: {
2252 Value *IIOperand = II->getArgOperand(0);
2253
2254
2255
2256
2257
2262 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
2265 ? Instruction::LShr
2266 : Instruction::Shl;
2268 }
2269 }
2270
2275
2276
2277 if (BW - LZ - TZ == 8) {
2278 assert(LZ != TZ && "active byte cannot be in the middle");
2279 if (LZ > TZ)
2280 return BinaryOperator::CreateNUWShl(
2281 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
2282
2283 return BinaryOperator::CreateExactLShr(
2284 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
2285 }
2286
2287
2289 unsigned C = X->getType()->getScalarSizeInBits() - BW;
2290 Value *CV = ConstantInt::get(X->getType(), C);
2293 }
2294
2297 return crossLogicOpFold;
2298 }
2299
2300
2302 true))
2303 return BitOp;
2304 break;
2305 }
2306 case Intrinsic::masked_load:
2307 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
2309 break;
2310 case Intrinsic::masked_store:
2311 return simplifyMaskedStore(*II);
2312 case Intrinsic::masked_gather:
2313 return simplifyMaskedGather(*II);
2314 case Intrinsic::masked_scatter:
2315 return simplifyMaskedScatter(*II);
2316 case Intrinsic::launder_invariant_group:
2317 case Intrinsic::strip_invariant_group:
2320 break;
2321 case Intrinsic::powi:
2323
2324
2325 if (Power->isMinusOne())
2327 II->getArgOperand(0), II);
2328
2329 if (Power->equalsInt(2))
2331 II->getArgOperand(0), II);
2332
2333 if (!Power->getValue()[0]) {
2335
2336
2337
2338
2341 match(II->getArgOperand(0),
2344 }
2345 }
2346 break;
2347
2348 case Intrinsic::cttz:
2349 case Intrinsic::ctlz:
2351 return I;
2352 break;
2353
2354 case Intrinsic::ctpop:
2356 return I;
2357 break;
2358
2359 case Intrinsic::fshl:
2360 case Intrinsic::fshr: {
2361 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
2362 Type *Ty = II->getType();
2363 unsigned BitWidth = Ty->getScalarSizeInBits();
2366
2370 if (!ModuloC)
2371 return nullptr;
2372 if (ModuloC != ShAmtC)
2374
2376 ShAmtC, DL),
2378 "Shift amount expected to be modulo bitwidth");
2379
2380
2381
2382
2383 if (IID == Intrinsic::fshr) {
2384
2386 return nullptr;
2387
2393 }
2394 assert(IID == Intrinsic::fshl &&
2395 "All funnel shifts by simple constants should go left");
2396
2397
2398
2400 return BinaryOperator::CreateShl(Op0, ShAmtC);
2401
2402
2403
2405 return BinaryOperator::CreateLShr(Op1,
2407
2408
2414 }
2417 true))
2418 return BitOp;
2419
2420
2421
2423 const APInt *ShAmtInnerC, *ShAmtOuterC;
2425 m_APInt(ShAmtInnerC))) &&
2426 match(ShAmtC, m_APInt(ShAmtOuterC)) && Op0 == Op1) {
2427 APInt Sum = *ShAmtOuterC + *ShAmtInnerC;
2429 if (Modulo.isZero())
2431 Constant *ModuloC = ConstantInt::get(Ty, Modulo);
2433 {InnerOp, InnerOp, ModuloC});
2434 }
2435 }
2436
2437
2438
2439
2445 Mod, IID == Intrinsic::fshl ? Intrinsic::fshr : Intrinsic::fshl, Ty);
2447 }
2448
2449
2450
2453 Value *Op2 = II->getArgOperand(2);
2455 return BinaryOperator::CreateShl(Op0, And);
2456 }
2457
2458
2460 return &CI;
2461
2462
2463
2464
2466 break;
2470 return &CI;
2471 break;
2472 }
2473 case Intrinsic::ptrmask: {
2474 unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType());
2477 return II;
2478
2479 Value *InnerPtr, *InnerMask;
2481
2482
2483
2484 if (match(II->getArgOperand(0),
2486 m_Value(InnerMask))))) {
2487 assert(II->getArgOperand(1)->getType() == InnerMask->getType() &&
2488 "Mask types must match");
2489
2490
2491 Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask);
2495 }
2496
2497
2498 if (!CI.hasRetAttr(Attribute::NonNull) &&
2503 }
2504
2505 unsigned NewAlignmentLog =
2508
2509
2514 }
2516 return &CI;
2517 break;
2518 }
2519 case Intrinsic::uadd_with_overflow:
2520 case Intrinsic::sadd_with_overflow: {
2521 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2522 return I;
2523
2524
2525
2526
2528 const APInt *C0, *C1;
2529 Value *Arg0 = II->getArgOperand(0);
2530 Value *Arg1 = II->getArgOperand(1);
2531 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2532 bool HasNWAdd = IsSigned
2536 bool Overflow;
2538 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
2539 if (!Overflow)
2541 *II, Builder.CreateBinaryIntrinsic(
2542 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2543 }
2544 break;
2545 }
2546
2547 case Intrinsic::umul_with_overflow:
2548 case Intrinsic::smul_with_overflow:
2549 case Intrinsic::usub_with_overflow:
2550 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2551 return I;
2552 break;
2553
2554 case Intrinsic::ssub_with_overflow: {
2555 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2556 return I;
2557
2559 Value *Arg0 = II->getArgOperand(0);
2560 Value *Arg1 = II->getArgOperand(1);
2561
2562
2563
2564
2567
2568
2570 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2571 Arg0, NegVal));
2572 }
2573
2574 break;
2575 }
2576
2577 case Intrinsic::uadd_sat:
2578 case Intrinsic::sadd_sat:
2579 case Intrinsic::usub_sat:
2580 case Intrinsic::ssub_sat: {
2582 Type *Ty = SI->getType();
2583 Value *Arg0 = SI->getLHS();
2584 Value *Arg1 = SI->getRHS();
2585
2586
2588 Arg0, Arg1, SI);
2589 switch (OR) {
2591 break;
2593 if (SI->isSigned())
2595 else
2598 unsigned BitWidth = Ty->getScalarSizeInBits();
2601 }
2603 unsigned BitWidth = Ty->getScalarSizeInBits();
2606 }
2607 }
2608
2609
2610
2611
2612
2615 if (IID == Intrinsic::usub_sat &&
2618 auto *NewC = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, C, C1);
2619 auto *NewSub =
2620 Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC, A);
2622 }
2623
2624
2625 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2626 C->isNotMinSignedValue()) {
2629 *II, Builder.CreateBinaryIntrinsic(
2630 Intrinsic::sadd_sat, Arg0, NegVal));
2631 }
2632
2633
2634
2635
2638 const APInt *Val, *Val2;
2640 bool IsUnsigned =
2641 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2642 if (Other->getIntrinsicID() == IID &&
2646 if (IsUnsigned)
2647 NewVal = Val->uadd_sat(*Val2);
2649 bool Overflow;
2650 NewVal = Val->sadd_ov(*Val2, Overflow);
2651 if (Overflow) {
2652
2653
2654 break;
2655 }
2656 } else {
2657
2658 break;
2659 }
2660
2662 *II, Builder.CreateBinaryIntrinsic(
2663 IID, X, ConstantInt::get(II->getType(), NewVal)));
2664 }
2665 }
2666 break;
2667 }
2668
2669 case Intrinsic::minnum:
2670 case Intrinsic::maxnum:
2671 case Intrinsic::minimum:
2672 case Intrinsic::maximum: {
2673 Value *Arg0 = II->getArgOperand(0);
2674 Value *Arg1 = II->getArgOperand(1);
2678
2679
2680
2682 switch (IID) {
2683 case Intrinsic::maxnum:
2684 NewIID = Intrinsic::minnum;
2685 break;
2686 case Intrinsic::minnum:
2687 NewIID = Intrinsic::maxnum;
2688 break;
2689 case Intrinsic::maximum:
2690 NewIID = Intrinsic::minimum;
2691 break;
2692 case Intrinsic::minimum:
2693 NewIID = Intrinsic::maximum;
2694 break;
2695 default:
2697 }
2698 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2699 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2701 return FNeg;
2702 }
2703
2704
2707 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2713 switch (IID) {
2714 case Intrinsic::maxnum:
2715 Res = maxnum(*C1, *C2);
2716 break;
2717 case Intrinsic::minnum:
2718 Res = minnum(*C1, *C2);
2719 break;
2720 case Intrinsic::maximum:
2721 Res = maximum(*C1, *C2);
2722 break;
2723 case Intrinsic::minimum:
2724 Res = minimum(*C1, *C2);
2725 break;
2726 default:
2728 }
2729
2730
2731
2733 IID, X, ConstantFP::get(Arg0->getType(), Res),
2736 }
2737 }
2738
2739
2742 X->getType() == Y->getType()) {
2743 Value *NewCall =
2744 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
2745 return new FPExtInst(NewCall, II->getType());
2746 }
2747
2748
2749
2750
2751
2752
2753
2754 auto IsMinMaxOrXNegX = [IID, &X](Value *Op0, Value *Op1) {
2756 return Op0->hasOneUse() ||
2757 (IID != Intrinsic::minimum && IID != Intrinsic::minnum);
2758 return false;
2759 };
2760
2761 if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) {
2762 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2763 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2764 R = Builder.CreateFNegFMF(R, II);
2766 }
2767
2768 break;
2769 }
2770 case Intrinsic::matrix_multiply: {
2771
2772
2773
2779 return II;
2780 }
2781
2782 Value *Op0 = II->getOperand(0);
2783 Value *Op1 = II->getOperand(1);
2784 Value *OpNotNeg, *NegatedOp;
2785 unsigned NegatedOpArg, OtherOpArg;
2787 NegatedOp = Op0;
2788 NegatedOpArg = 0;
2789 OtherOpArg = 1;
2791 NegatedOp = Op1;
2792 NegatedOpArg = 1;
2793 OtherOpArg = 0;
2794 } else
2795
2796 break;
2797
2798
2800 break;
2801
2802 Value *OtherOp = II->getOperand(OtherOpArg);
2809
2812 Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
2815 return II;
2816 }
2817
2820 NewArgs[NegatedOpArg] = OpNotNeg;
2822 Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
2824 }
2825 break;
2826 }
2827 case Intrinsic::fmuladd: {
2828
2831 II->getFastMathFlags(), SQ.getWithInstruction(II)))
2833 II->getFastMathFlags());
2834
2835 [[fallthrough]];
2836 }
2837 case Intrinsic::fma: {
2838
2839 Value *Src0 = II->getArgOperand(0);
2840 Value *Src1 = II->getArgOperand(1);
2841 Value *Src2 = II->getArgOperand(2);
2846 return II;
2847 }
2848
2849
2854 return II;
2855 }
2856
2857
2858
2860 SQ.getWithInstruction(II)))
2862
2863
2864
2865
2867 (match(Src2, m_PosZeroFP()) && II->getFastMathFlags().noSignedZeros()))
2869
2870
2873
2874 break;
2875 }
2876 case Intrinsic::copysign: {
2877 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
2880 if (*KnownSignBit) {
2881
2882
2883 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2885 }
2886
2887
2888
2889 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2891 }
2892
2893
2894
2897 Value *CopySign =
2900 }
2901
2902
2903
2904
2907 APFloat PosMagC = *MagC;
2910 }
2911
2912
2913
2914
2917
2918 break;
2919 }
2920 case Intrinsic::fabs: {
2922 Value *Arg = II->getArgOperand(0);
2924
2926 CallInst *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2928 }
2929
2931
2934 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
2935 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
2940 SI->setFastMathFlags(FMF1 | FMF2);
2941 return SI;
2942 }
2943
2946
2949 }
2950
2951 Value *Magnitude, *Sign;
2952 if (match(II->getArgOperand(0),
2954
2956 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Magnitude, II);
2958 }
2959
2960 [[fallthrough]];
2961 }
2962 case Intrinsic::ceil:
2963 case Intrinsic:🤣
2964 case Intrinsic::round:
2965 case Intrinsic::roundeven:
2966 case Intrinsic::nearbyint:
2967 case Intrinsic::rint:
2968 case Intrinsic::trunc: {
2971
2972 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2973 return new FPExtInst(NarrowII, II->getType());
2974 }
2975 break;
2976 }
2977 case Intrinsic::cos:
2978 case Intrinsic::amdgcn_cos: {
2980 Value *Src = II->getArgOperand(0);
2983
2984
2985
2987 }
2988 break;
2989 }
2990 case Intrinsic::sin:
2991 case Intrinsic::amdgcn_sin: {
2994
2995 Value *NewSin = Builder.CreateUnaryIntrinsic(IID, X, II);
2997 }
2998 break;
2999 }
3000 case Intrinsic::ldexp: {
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013 Value *Src = II->getArgOperand(0);
3014 Value *Exp = II->getArgOperand(1);
3015 Value *InnerSrc;
3016 Value *InnerExp;
3019 Exp->getType() == InnerExp->getType()) {
3022
3025
3026
3027 Value *NewExp = Builder.CreateAdd(InnerExp, Exp);
3028 II->setArgOperand(1, NewExp);
3029 II->setFastMathFlags(InnerFlags);
3031 }
3032 }
3033
3034
3035
3040 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 2.0),
3041 ConstantFP::get(II->getType(), 1.0));
3043 }
3047 Builder.CreateSelect(ExtSrc, ConstantFP::get(II->getType(), 0.5),
3048 ConstantFP::get(II->getType(), 1.0));
3050 }
3051
3052
3053
3054
3055
3056 Value *SelectCond, *SelectLHS, *SelectRHS;
3057 if (match(II->getArgOperand(1),
3059 m_Value(SelectRHS))))) {
3060 Value *NewLdexp = nullptr;
3063 NewLdexp = Builder.CreateLdexp(Src, SelectLHS, II);
3064 Select = Builder.CreateSelect(SelectCond, NewLdexp, Src);
3066 NewLdexp = Builder.CreateLdexp(Src, SelectRHS, II);
3067 Select = Builder.CreateSelect(SelectCond, Src, NewLdexp);
3068 }
3069
3070 if (NewLdexp) {
3073 }
3074 }
3075
3076 break;
3077 }
3078 case Intrinsic::ptrauth_auth:
3079 case Intrinsic::ptrauth_resign: {
3080
3081
3082 if (II->hasOperandBundles())
3083 break;
3084
3085
3086
3087 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
3088 Value *Ptr = II->getArgOperand(0);
3090 Value *Disc = II->getArgOperand(2);
3091
3092
3093
3094 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
3096
3097
3099 break;
3100
3102 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
3104 break;
3105 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
3107 break;
3110 } else
3111 break;
3113
3114
3116 if (!CPA || !CPA->isKnownCompatibleWith(Key, Disc, DL))
3117 break;
3118
3119
3125 SignDisc, Null,
3126 Null);
3130 }
3131
3132
3133 BasePtr = Builder.CreatePtrToInt(CPA->getPointer(), II->getType());
3134 } else
3135 break;
3136
3137 unsigned NewIntrin;
3138 if (AuthKey && NeedSign) {
3139
3140 NewIntrin = Intrinsic::ptrauth_resign;
3141 } else if (AuthKey) {
3142
3143 NewIntrin = Intrinsic::ptrauth_auth;
3144 } else if (NeedSign) {
3145
3146 NewIntrin = Intrinsic::ptrauth_sign;
3147 } else {
3148
3151 }
3152
3155 if (AuthKey) {
3158 }
3159
3160 if (NeedSign) {
3161 CallArgs.push_back(II->getArgOperand(3));
3162 CallArgs.push_back(II->getArgOperand(4));
3163 }
3164
3168 }
3169 case Intrinsic::arm_neon_vtbl1:
3170 case Intrinsic::aarch64_neon_tbl1:
3173 break;
3174
3175 case Intrinsic::arm_neon_vmulls:
3176 case Intrinsic::arm_neon_vmullu:
3177 case Intrinsic::aarch64_neon_smull:
3178 case Intrinsic::aarch64_neon_umull: {
3179 Value *Arg0 = II->getArgOperand(0);
3180 Value *Arg1 = II->getArgOperand(1);
3181
3182
3185 }
3186
3187
3188 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
3189 IID == Intrinsic::aarch64_neon_umull);
3193 Value *V0 = Builder.CreateIntCast(CV0, NewVT, !Zext);
3194 Value *V1 = Builder.CreateIntCast(CV1, NewVT, !Zext);
3196 }
3197
3198
3200 }
3201
3202
3206 if (Splat->isOne())
3208 !Zext);
3209
3210 break;
3211 }
3212 case Intrinsic::arm_neon_aesd:
3213 case Intrinsic::arm_neon_aese:
3214 case Intrinsic::aarch64_crypto_aesd:
3215 case Intrinsic::aarch64_crypto_aese:
3216 case Intrinsic::aarch64_sve_aesd:
3217 case Intrinsic::aarch64_sve_aese: {
3218 Value *DataArg = II->getArgOperand(0);
3219 Value *KeyArg = II->getArgOperand(1);
3220
3221
3224
3225
3231 return II;
3232 }
3233 break;
3234 }
3235 case Intrinsic::hexagon_V6_vandvrt:
3236 case Intrinsic::hexagon_V6_vandvrt_128B: {
3237
3240 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
3241 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
3242 break;
3243 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
3246
3248 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
3250 }
3251 break;
3252 }
3253 case Intrinsic::stackrestore: {
3254 enum class ClassifyResult {
3256 Alloca,
3257 StackRestore,
3258 CallWithSideEffects,
3259 };
3262 return ClassifyResult::Alloca;
3263
3266 if (II->getIntrinsicID() == Intrinsic::stackrestore)
3267 return ClassifyResult::StackRestore;
3268
3269 if (II->mayHaveSideEffects())
3270 return ClassifyResult::CallWithSideEffects;
3271 } else {
3272
3273 return ClassifyResult::CallWithSideEffects;
3274 }
3275 }
3276
3277 return ClassifyResult::None;
3278 };
3279
3280
3281
3282
3284 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
3285 SS->getParent() == II->getParent()) {
3287 bool CannotRemove = false;
3288 for (++BI; &*BI != II; ++BI) {
3289 switch (Classify(&*BI)) {
3290 case ClassifyResult::None:
3291
3292 break;
3293
3294 case ClassifyResult::StackRestore:
3295
3296
3298 CannotRemove = true;
3299 break;
3300
3301 case ClassifyResult::Alloca:
3302 case ClassifyResult::CallWithSideEffects:
3303
3304
3305 CannotRemove = true;
3306 break;
3307 }
3308 if (CannotRemove)
3309 break;
3310 }
3311
3312 if (!CannotRemove)
3314 }
3315 }
3316
3317
3318
3320 Instruction *TI = II->getParent()->getTerminator();
3321 bool CannotRemove = false;
3322 for (++BI; &*BI != TI; ++BI) {
3323 switch (Classify(&*BI)) {
3324 case ClassifyResult::None:
3325
3326 break;
3327
3328 case ClassifyResult::StackRestore:
3329
3331
3332 case ClassifyResult::Alloca:
3333 case ClassifyResult::CallWithSideEffects:
3334
3335
3336
3337 CannotRemove = true;
3338 break;
3339 }
3340 if (CannotRemove)
3341 break;
3342 }
3343
3344
3345
3346
3349 break;
3350 }
3351 case Intrinsic::lifetime_end:
3352
3353
3354 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3355 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
3356 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3357 break;
3358
3360 return I.getIntrinsicID() == Intrinsic::lifetime_start;
3361 }))
3362 return nullptr;
3363 break;
3364 case Intrinsic::assume: {
3365 Value *IIOperand = II->getArgOperand(0);
3367 II->getOperandBundlesAsDefs(OpBundles);
3368
3369
3370
3371
3377 return nullptr;
3378 };
3379
3380
3381
3384 return RemoveConditionFromAssume(Next);
3385
3386
3387
3388
3389 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
3390 Value *AssumeIntrinsic = II->getCalledOperand();
3393 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
3394 II->getName());
3395 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
3397 }
3398
3400 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3401 Builder.CreateNot(A), OpBundles, II->getName());
3402 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
3403 Builder.CreateNot(B), II->getName());
3405 }
3406
3407
3408
3412 LHS->getOpcode() == Instruction::Load &&
3413 LHS->getType()->isPointerTy() &&
3416 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
3417 LHS->setMetadata(LLVMContext::MD_noundef, MD);
3418 return RemoveConditionFromAssume(II);
3419
3420
3421
3422 }
3423
3424 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3426
3427
3428
3429
3430
3431 if (OBU.getTagName() == "separate_storage") {
3433 auto MaybeSimplifyHint = [&](const Use &U) {
3434 Value *Hint = U.get();
3435
3436
3440 };
3441 MaybeSimplifyHint(OBU.Inputs[0]);
3442 MaybeSimplifyHint(OBU.Inputs[1]);
3443 }
3444
3445
3446 if (OBU.getTagName() == "align" && OBU.Inputs.size() == 2) {
3449 if (!RK || RK.AttrKind != Attribute::Alignment ||
3451 continue;
3452
3453
3456
3457
3458
3459
3462 continue;
3463
3464
3465
3466
3470 if ((1ULL << TZ) < RK.ArgValue)
3471 continue;
3473 }
3474 }
3475
3476
3477
3478
3479
3480
3482 match(IIOperand,
3484 A->getType()->isPointerTy()) {
3487
3488 Replacement->insertBefore(Next->getIterator());
3489 AC.registerAssumption(Replacement);
3490 return RemoveConditionFromAssume(II);
3491 }
3492 }
3493
3494
3495
3496
3497
3498
3499
3500
3504 match(IIOperand,
3512
3513
3514
3515
3518 if (auto *Replacement =
3520
3521 Replacement->insertAfter(II->getIterator());
3522 AC.registerAssumption(Replacement);
3523 }
3524 return RemoveConditionFromAssume(II);
3525 }
3526 }
3527 }
3528
3529
3531 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
3532 auto &BOI = II->bundle_op_info_begin()[Idx];
3535 if (BOI.End - BOI.Begin > 2)
3536 continue;
3537
3538
3543 if (CanonRK == RK)
3544 continue;
3545 if (!CanonRK) {
3546 if (BOI.End - BOI.Begin > 0) {
3547 Worklist.pushValue(II->op_begin()[BOI.Begin]);
3549 }
3550 continue;
3551 }
3553 if (BOI.End - BOI.Begin > 0)
3554 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
3555 if (BOI.End - BOI.Begin > 1)
3556 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
3560 return II;
3561 }
3562 }
3563
3564
3565
3570
3571
3575 }
3576
3577
3578
3580 break;
3581 }
3582 case Intrinsic::experimental_guard: {
3583
3584
3585
3588
3590 break;
3592 }
3593 Value *NextCond = nullptr;
3594 if (match(NextInst,
3596 Value *CurrCond = II->getArgOperand(0);
3597
3598
3599
3600 if (CurrCond != NextCond) {
3602 while (MoveI != NextInst) {
3603 auto *Temp = MoveI;
3606 }
3608 }
3610 return II;
3611 }
3612 break;
3613 }
3614 case Intrinsic::vector_insert: {
3615 Value *Vec = II->getArgOperand(0);
3616 Value *SubVec = II->getArgOperand(1);
3617 Value *Idx = II->getArgOperand(2);
3621
3622
3623
3624 if (DstTy && VecTy && SubVecTy) {
3625 unsigned DstNumElts = DstTy->getNumElements();
3626 unsigned VecNumElts = VecTy->getNumElements();
3627 unsigned SubVecNumElts = SubVecTy->getNumElements();
3629
3630
3631 if (VecNumElts == SubVecNumElts)
3633
3634
3635
3636
3637
3639 unsigned i;
3640 for (i = 0; i != SubVecNumElts; ++i)
3642 for (; i != VecNumElts; ++i)
3644
3645 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
3646
3648 for (unsigned i = 0; i != IdxN; ++i)
3649 Mask.push_back(i);
3650 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3651 Mask.push_back(i);
3652 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3653 Mask.push_back(i);
3654
3655 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
3657 }
3658 break;
3659 }
3660 case Intrinsic::vector_extract: {
3661 Value *Vec = II->getArgOperand(0);
3662 Value *Idx = II->getArgOperand(1);
3663
3664 Type *ReturnType = II->getType();
3665
3666
3668 Value *InsertTuple, *InsertIdx, *InsertValue;
3672 InsertValue->getType() == ReturnType) {
3674
3675
3676
3677 if (ExtractIdx == Index)
3679
3680
3681
3682
3683
3684 else
3686 }
3687
3690
3691 if (DstTy && VecTy) {
3692 auto DstEltCnt = DstTy->getElementCount();
3693 auto VecEltCnt = VecTy->getElementCount();
3695
3696
3697 if (DstEltCnt == VecTy->getElementCount()) {
3700 }
3701
3702
3703
3704 if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3705 break;
3706
3708 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3709 Mask.push_back(IdxN + i);
3710
3711 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
3713 }
3714 break;
3715 }
3716 case Intrinsic::experimental_vp_reverse: {
3718 Value *Vec = II->getArgOperand(0);
3719 Value *Mask = II->getArgOperand(1);
3721 break;
3722 Value *EVL = II->getArgOperand(2);
3723
3724
3730 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(),
3731 II->getIterator());
3733 }
3734 break;
3735 }
3736 case Intrinsic::vector_reduce_or:
3737 case Intrinsic::vector_reduce_and: {
3738
3739
3740
3741
3742
3743
3744
3745 Value *Arg = II->getArgOperand(0);
3747
3748 if (Value *NewOp =
3751 return II;
3752 }
3753
3756 if (FTy->getElementType() == Builder.getInt1Ty()) {
3758 Vect, Builder.getIntNTy(FTy->getNumElements()));
3759 if (IID == Intrinsic::vector_reduce_and) {
3760 Res = Builder.CreateICmpEQ(
3762 } else {
3763 assert(IID == Intrinsic::vector_reduce_or &&
3764 "Expected or reduction.");
3765 Res = Builder.CreateIsNotNull(Res);
3766 }
3767 if (Arg != Vect)
3769 II->getType());
3771 }
3772 }
3773 [[fallthrough]];
3774 }
3775 case Intrinsic::vector_reduce_add: {
3776 if (IID == Intrinsic::vector_reduce_add) {
3777
3778
3779
3780
3781
3782
3783 Value *Arg = II->getArgOperand(0);
3785
3786 if (Value *NewOp =
3789 return II;
3790 }
3791
3794 if (FTy->getElementType() == Builder.getInt1Ty()) {
3796 Vect, Builder.getIntNTy(FTy->getNumElements()));
3797 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3798 if (Res->getType() != II->getType())
3799 Res = Builder.CreateZExtOrTrunc(Res, II->getType());
3800 if (Arg != Vect &&
3802 Res = Builder.CreateNeg(Res);
3804 }
3805 }
3806
3807
3811 if (VecToReduceCount.isFixed()) {
3812 unsigned VectorSize = VecToReduceCount.getFixedValue();
3813 return BinaryOperator::CreateMul(
3815 ConstantInt::get(Splat->getType(), VectorSize, false,
3816 true));
3817 }
3818 }
3819 }
3820 [[fallthrough]];
3821 }
3822 case Intrinsic::vector_reduce_xor: {
3823 if (IID == Intrinsic::vector_reduce_xor) {
3824
3825
3826
3827
3828
3829
3830
3831 Value *Arg = II->getArgOperand(0);
3833
3834 if (Value *NewOp =
3837 return II;
3838 }
3839
3842 if (VTy->getElementType() == Builder.getInt1Ty()) {
3844 if (Arg != Vect)
3846 II->getType());
3848 }
3849 }
3850 }
3851 [[fallthrough]];
3852 }
3853 case Intrinsic::vector_reduce_mul: {
3854 if (IID == Intrinsic::vector_reduce_mul) {
3855
3856
3857
3858
3859
3860
3861 Value *Arg = II->getArgOperand(0);
3863
3864 if (Value *NewOp =
3867 return II;
3868 }
3869
3872 if (VTy->getElementType() == Builder.getInt1Ty()) {
3874 if (Res->getType() != II->getType())
3875 Res = Builder.CreateZExt(Res, II->getType());
3877 }
3878 }
3879 }
3880 [[fallthrough]];
3881 }
3882 case Intrinsic::vector_reduce_umin:
3883 case Intrinsic::vector_reduce_umax: {
3884 if (IID == Intrinsic::vector_reduce_umin ||
3885 IID == Intrinsic::vector_reduce_umax) {
3886
3887
3888
3889
3890
3891
3892 Value *Arg = II->getArgOperand(0);
3894
3895 if (Value *NewOp =
3898 return II;
3899 }
3900
3903 if (VTy->getElementType() == Builder.getInt1Ty()) {
3904 Value *Res = IID == Intrinsic::vector_reduce_umin
3905 ? Builder.CreateAndReduce(Vect)
3906 : Builder.CreateOrReduce(Vect);
3907 if (Arg != Vect)
3909 II->getType());
3911 }
3912 }
3913 }
3914 [[fallthrough]];
3915 }
3916 case Intrinsic::vector_reduce_smin:
3917 case Intrinsic::vector_reduce_smax: {
3918 if (IID == Intrinsic::vector_reduce_smin ||
3919 IID == Intrinsic::vector_reduce_smax) {
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934 Value *Arg = II->getArgOperand(0);
3936
3937 if (Value *NewOp =
3940 return II;
3941 }
3942
3945 if (VTy->getElementType() == Builder.getInt1Ty()) {
3947 if (Arg != Vect)
3949 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
3950 (ExtOpc == Instruction::CastOps::ZExt))
3951 ? Builder.CreateAndReduce(Vect)
3952 : Builder.CreateOrReduce(Vect);
3953 if (Arg != Vect)
3954 Res = Builder.CreateCast(ExtOpc, Res, II->getType());
3956 }
3957 }
3958 }
3959 [[fallthrough]];
3960 }
3961 case Intrinsic::vector_reduce_fmax:
3962 case Intrinsic::vector_reduce_fmin:
3963 case Intrinsic::vector_reduce_fadd:
3964 case Intrinsic::vector_reduce_fmul: {
3965 bool CanReorderLanes = (IID != Intrinsic::vector_reduce_fadd &&
3966 IID != Intrinsic::vector_reduce_fmul) ||
3967 II->hasAllowReassoc();
3968 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
3969 IID == Intrinsic::vector_reduce_fmul)
3970 ? 1
3971 : 0;
3972 Value *Arg = II->getArgOperand(ArgIdx);
3974 replaceUse(II->getOperandUse(ArgIdx), NewOp);
3975 return nullptr;
3976 }
3977 break;
3978 }
3979 case Intrinsic::is_fpclass: {
3981 return I;
3982 break;
3983 }
3984 case Intrinsic::threadlocal_address: {
3989 return II;
3990 }
3991 break;
3992 }
3993 case Intrinsic::frexp: {
3995
3996
3997
4000 X = Builder.CreateInsertValue(
4002 1);
4004 }
4005 }
4006 break;
4007 }
4008 case Intrinsic::get_active_lane_mask: {
4009 const APInt *Op0, *Op1;
4012 Type *OpTy = II->getOperand(0)->getType();
4015 II->getType(), Intrinsic::get_active_lane_mask,
4016 {Constant::getNullValue(OpTy),
4017 ConstantInt::get(OpTy, Op1->usub_sat(*Op0))}));
4018 }
4019 break;
4020 }
4021 case Intrinsic::experimental_get_vector_length: {
4022
4024 std::max(II->getArgOperand(0)->getType()->getScalarSizeInBits(),
4025 II->getType()->getScalarSizeInBits());
4028 SQ.getWithInstruction(II))
4031 ->getValue()
4034 MaxLanes = MaxLanes.multiply(
4036
4039 *II, Builder.CreateZExtOrTrunc(II->getArgOperand(0), II->getType()));
4040 return nullptr;
4041 }
4042 default: {
4043
4045 if (V)
4046 return *V;
4047 break;
4048 }
4049 }
4050
4051
4052
4053
4054
4055
4056
4060 bool IsVectorCond = Sel->getCondition()->getType()->isVectorTy();
4062 continue;
4063
4064
4065 bool SimplifyBothArms =
4066 ->getType()->isVectorTy() && II->getType()->isVectorTy();
4068 *II, Sel, false, SimplifyBothArms))
4069 return R;
4070 }
4073 return R;
4074 }
4075 }
4076
4078 return Shuf;
4079
4082
4085
4086
4087
4088 return visitCallBase(*II);
4089}
4090
4091
4094
4095
4098
4099
4100 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
4102
4103 if (FI1SyncScope != FI2->getSyncScopeID() ||
4106 return false;
4107
4109 };
4110 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
4112
4114 if (isIdenticalOrStrongerFence(PFI, &FI))
4116 return nullptr;
4117}
4118
4119
4121 return visitCallBase(II);
4122}
4123
4124
4126 return visitCallBase(CBI);
4127}
4128
4130 if (!CI->hasFnAttr("modular-format"))
4131 return nullptr;
4132
4135
4136 unsigned FirstArgIdx;
4137 [[maybe_unused]] bool Error;
4138 Error = Args[2].getAsInteger(10, FirstArgIdx);
4139 assert( && "invalid first arg index");
4140 --FirstArgIdx;
4144
4145 if (AllAspects.empty())
4146 return nullptr;
4147
4149 for (StringRef Aspect : AllAspects) {
4150 if (Aspect == "float") {
4154 [](Value *V) { return V->getType()->isFloatingPointTy(); }))
4155 NeededAspects.push_back("float");
4156 } else {
4157
4158 NeededAspects.push_back(Aspect);
4159 }
4160 }
4161
4162 if (NeededAspects.size() == AllAspects.size())
4163 return nullptr;
4164
4169 FnName, Callee->getFunctionType(),
4170 Callee->getAttributes().removeFnAttribute(Ctx, "modular-format"));
4172 New->setCalledFunction(ModularFn);
4173 New->removeFnAttr("modular-format");
4174 B.Insert(New);
4175
4176 const auto ReferenceAspect = [&](StringRef Aspect) {
4178 Name += '_';
4179 Name += Aspect;
4182 B.CreateCall(RelocNoneFn,
4184 };
4185
4187 for (StringRef Request : NeededAspects)
4188 ReferenceAspect(Request);
4189
4190 return New;
4191}
4192
4195
4196
4197
4198
4200 return nullptr;
4201
4202 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
4204 };
4205 auto InstCombineErase = [this](Instruction *I) {
4207 };
4209 InstCombineRAUW, InstCombineErase);
4210 if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
4211 ++NumSimplified;
4213 }
4215 ++NumSimplified;
4217 }
4218
4219 return nullptr;
4220}
4221
4223
4224
4226 if (Underlying != TrampMem &&
4227 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
4228 return nullptr;
4230 return nullptr;
4231
4233 for (User *U : TrampMem->users()) {
4235 if ()
4236 return nullptr;
4237 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
4238 if (InitTrampoline)
4239
4240 return nullptr;
4241 InitTrampoline = II;
4242 continue;
4243 }
4244 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
4245
4246 continue;
4247 return nullptr;
4248 }
4249
4250
4251 if (!InitTrampoline)
4252 return nullptr;
4253
4254
4255 if (InitTrampoline->getOperand(0) != TrampMem)
4256 return nullptr;
4257
4258 return InitTrampoline;
4259}
4260
4262 Value *TrampMem) {
4263
4264
4266 E = AdjustTramp->getParent()->begin();
4270 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
4271 II->getOperand(0) == TrampMem)
4272 return II;
4274 return nullptr;
4275 }
4276 return nullptr;
4277}
4278
4279
4280
4281
4283 Callee = Callee->stripPointerCasts();
4285 if (!AdjustTramp ||
4286 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
4287 return nullptr;
4288
4290
4292 return IT;
4294 return IT;
4295 return nullptr;
4296}
4297
4301 if (!IPC || !IPC->isNoopCast(DL))
4302 return nullptr;
4303
4305 if ()
4306 return nullptr;
4307
4309 if (IIID != Intrinsic::ptrauth_resign && IIID != Intrinsic::ptrauth_sign)
4310 return nullptr;
4311
4312
4313 std::optional PtrAuthBundleOrNone;
4318 PtrAuthBundleOrNone = Bundle;
4319 else
4321 }
4322
4323 if (!PtrAuthBundleOrNone)
4324 return nullptr;
4325
4326 Value *NewCallee = nullptr;
4327 switch (IIID) {
4328
4329
4330 case Intrinsic::ptrauth_resign: {
4331
4332 if (II->getOperand(3) != PtrAuthBundleOrNone->Inputs[0])
4333 return nullptr;
4334
4335 if (II->getOperand(4) != PtrAuthBundleOrNone->Inputs[1])
4336 return nullptr;
4337
4338
4339
4340 if (II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4341 return nullptr;
4342
4343 Value *NewBundleOps[] = {II->getOperand(1), II->getOperand(2)};
4344 NewBundles.emplace_back("ptrauth", NewBundleOps);
4345 NewCallee = II->getOperand(0);
4346 break;
4347 }
4348
4349
4350
4351
4352 case Intrinsic::ptrauth_sign: {
4353
4354 if (II->getOperand(1) != PtrAuthBundleOrNone->Inputs[0])
4355 return nullptr;
4356
4357 if (II->getOperand(2) != PtrAuthBundleOrNone->Inputs[1])
4358 return nullptr;
4359 NewCallee = II->getOperand(0);
4360 break;
4361 }
4362 default:
4364 }
4365
4366 if (!NewCallee)
4367 return nullptr;
4368
4369 NewCallee = Builder.CreateBitOrPointerCast(NewCallee, Callee->getType());
4372 return NewCall;
4373}
4374
4377 if (!CPA)
4378 return nullptr;
4379
4381
4382 if (!CalleeF)
4383 return nullptr;
4384
4385
4387 if (!PAB)
4388 return nullptr;
4389
4392
4393
4394 if (!CPA->isKnownCompatibleWith(Key, Discriminator, DL))
4395 return nullptr;
4396
4397
4400 return NewCall;
4401}
4402
4403bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
4405
4406
4407
4408
4410
4413
4416
4417
4422 } else {
4426 }
4427 }
4428
4429
4431 if (!Alignment)
4433
4436 uint64_t AlignmentVal = AlignOpC->getZExtValue();
4439 Align NewAlign = Align(AlignmentVal);
4440 if (NewAlign > ExistingAlign) {
4444 }
4445 }
4446 }
4448}
4449
4450
4453
4454
4455
4456
4457 SmallVector<unsigned, 4> ArgNos;
4458 unsigned ArgNo = 0;
4459
4461 if (V->getType()->isPointerTy()) {
4462
4463
4466 (HasDereferenceable &&
4468 V->getType()->getPointerAddressSpace()))) {
4469 if (Value *Res = simplifyNonNullOperand(V, HasDereferenceable)) {
4472 }
4476 }
4477 }
4478 ArgNo++;
4479 }
4480
4481 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
4482
4483 if (!ArgNos.empty()) {
4486 AS = AS.addParamAttribute(Ctx, ArgNos,
4490 }
4491
4492
4493
4497 transformConstExprCastCall(Call))
4498 return nullptr;
4499
4500 if (CalleeF) {
4501
4505 << "\n");
4507 return &Call;
4508 }
4509
4510
4511
4512
4518
4519
4520
4524
4525
4530
4531
4532
4536 return nullptr;
4537 }
4538 }
4539
4540
4541
4545
4546
4549
4551
4552 return nullptr;
4553 }
4554
4555
4558 }
4559
4561 return transformCallThroughTrampoline(Call, *II);
4562
4563
4564 if (Instruction *NewCall = foldPtrAuthIntrinsicCallee(Call))
4565 return NewCall;
4566
4567
4568 if (Instruction *NewCall = foldPtrAuthConstantCallee(Call))
4569 return NewCall;
4570
4573 if (->canThrow()) {
4574
4575
4578 }
4579 }
4580
4581
4582
4583
4586
4587
4589 }
4590
4594 Type *RetArgTy = ReturnedArg->getType();
4597 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
4598 }
4599
4600
4601
4605 }
4606
4607
4608
4612 if (CalleeF) {
4613 ConstantInt *FunctionType = nullptr;
4615
4616 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
4618
4619 if (FunctionType &&
4623 << ": call to " << CalleeF->getName()
4624 << " using a mismatching function pointer type\n";
4625 }
4626 });
4627
4629 }
4630
4633
4634
4636 case Intrinsic::experimental_gc_statepoint: {
4638 SmallPtrSet<Value *, 32> LiveGcValues;
4639 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4640 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4641
4642
4645 continue;
4646 }
4647
4650
4651
4655 continue;
4656 }
4657
4659
4660
4661
4663
4666 continue;
4667 }
4668
4669
4670 if (!GCR.hasRetAttr(Attribute::NonNull) &&
4674
4675 Worklist.pushUsersToWorkList(GCR);
4676 }
4677 }
4678
4679
4680
4685 }
4686
4687
4688
4689
4690
4691 LiveGcValues.insert(BasePtr);
4692 LiveGcValues.insert(DerivedPtr);
4693 }
4694 std::optional Bundle =
4696 unsigned NumOfGCLives = LiveGcValues.size();
4697 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
4698 break;
4699
4700 DenseMap<Value *, unsigned> Val2Idx;
4701 std::vector<Value *> NewLiveGc;
4702 for (Value *V : Bundle->Inputs) {
4704 if (!Inserted)
4705 continue;
4706 if (LiveGcValues.count(V)) {
4707 It->second = NewLiveGc.size();
4708 NewLiveGc.push_back(V);
4709 } else
4710 It->second = NumOfGCLives;
4711 }
4712
4713 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
4714 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
4716 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
4717 "Missed live gc for base pointer");
4719 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
4721 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
4722 "Missed live gc for derived pointer");
4724 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
4725 }
4726
4729 }
4730 default: { break; }
4731 }
4732
4734}
4735
4736
4737
4738
4739bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
4742 if (!Callee)
4743 return false;
4744
4746 "CallBr's don't have a single point after a def to insert at");
4747
4748
4749
4750
4751 if (Callee->isDeclaration())
4752 return false;
4753
4754
4755
4756
4757 if (Callee->hasFnAttribute("thunk"))
4758 return false;
4759
4760
4761
4762
4763 if (Callee->hasFnAttribute(Attribute::Naked))
4764 return false;
4765
4766
4767
4768
4769
4771 return false;
4772
4775
4776
4777
4778
4779 FunctionType *FT = Callee->getFunctionType();
4781 Type *NewRetTy = FT->getReturnType();
4782
4783
4784 if (OldRetTy != NewRetTy) {
4785
4787 return false;
4788
4790 if (->use_empty())
4791 return false;
4792 }
4793
4794 if (!CallerPAL.isEmpty() && ->use_empty()) {
4795 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4796 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(
4797 NewRetTy, CallerPAL.getRetAttrs())))
4798 return false;
4799 }
4800
4801
4802
4803
4804
4805 if (->use_empty()) {
4806 BasicBlock *PhisNotSupportedBlock = nullptr;
4808 PhisNotSupportedBlock = II->getNormalDest();
4809 if (PhisNotSupportedBlock)
4810 for (User *U : Caller->users())
4812 if (PN->getParent() == PhisNotSupportedBlock)
4813 return false;
4814 }
4815 }
4816
4818 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4829 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
4830 return false;
4831
4833 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4834 Type *ParamTy = FT->getParamType(i);
4835 Type *ActTy = (*AI)->getType();
4836
4838 return false;
4839
4840
4841 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
4842 .overlaps(AttributeFuncs::typeIncompatible(
4843 ParamTy, CallerPAL.getParamAttrs(i),
4844 AttributeFuncs::ASK_UNSAFE_TO_DROP)))
4845 return false;
4846
4848 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
4849 return false;
4850
4851 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
4852 return false;
4853
4854 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
4855 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
4856 return false;
4857 }
4858
4859 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4860 !CallerPAL.isEmpty()) {
4861
4862
4863
4864 unsigned SRetIdx;
4865 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4866 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
4867 return false;
4868 }
4869
4870
4871
4872 SmallVector<Value *, 8> Args;
4874 Args.reserve(NumActualArgs);
4875 ArgAttrs.reserve(NumActualArgs);
4876
4877
4878 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4879
4880
4881
4882 RAttrs.remove(
4883 AttributeFuncs::typeIncompatible(NewRetTy, CallerPAL.getRetAttrs()));
4884
4887 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4888 Type *ParamTy = FT->getParamType(i);
4889
4890 Value *NewArg = *AI;
4891 if ((*AI)->getType() != ParamTy)
4892 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
4893 Args.push_back(NewArg);
4894
4895
4896
4897 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
4898 ParamTy, CallerPAL.getParamAttrs(i), AttributeFuncs::ASK_SAFE_TO_DROP);
4900 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
4901 }
4902
4903
4904
4905 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4907 ArgAttrs.push_back(AttributeSet());
4908 }
4909
4910
4911 if (FT->getNumParams() < NumActualArgs) {
4912
4913 if (FT->isVarArg()) {
4914
4915 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4917 Value *NewArg = *AI;
4918 if (PTy != (*AI)->getType()) {
4919
4922 NewArg = Builder.CreateCast(opcode, *AI, PTy);
4923 }
4924 Args.push_back(NewArg);
4925
4926
4927 ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
4928 }
4929 }
4930 }
4931
4932 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
4933
4935 Caller->setName("");
4936
4937 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4938 "missing argument attributes");
4939 AttributeList NewCallerPAL = AttributeList::get(
4941
4944
4945 CallBase *NewCall;
4947 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
4948 II->getUnwindDest(), Args, OpBundles);
4949 } else {
4950 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
4953 }
4957
4958
4959 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
4960
4961
4964 if (OldRetTy != NV->getType() && ->use_empty()) {
4965 assert(->getType()->isVoidTy());
4967 NC->setDebugLoc(Caller->getDebugLoc());
4968
4970 assert(OptInsertPt && "No place to insert cast");
4972 Worklist.pushUsersToWorkList(*Caller);
4973 }
4974
4975 if (->use_empty())
4977 else if (Caller->hasValueHandle()) {
4978 if (OldRetTy == NV->getType())
4980 else
4981
4982
4984 }
4985
4987 return true;
4988}
4989
4990
4991
4993InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
4997
4998
4999
5000 if (Attrs.hasAttrSomewhere(Attribute::Nest))
5001 return nullptr;
5002
5005
5006 AttributeList NestAttrs = NestF->getAttributes();
5007 if (!NestAttrs.isEmpty()) {
5008 unsigned NestArgNo = 0;
5009 Type *NestTy = nullptr;
5010 AttributeSet NestAttr;
5011
5012
5014 E = NestFTy->param_end();
5015 I != E; ++NestArgNo, ++I) {
5016 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
5018
5019 NestTy = *I;
5020 NestAttr = AS;
5021 break;
5022 }
5023 }
5024
5025 if (NestTy) {
5026 std::vector<Value*> NewArgs;
5027 std::vector NewArgAttrs;
5030
5031
5032
5033
5034 {
5035 unsigned ArgNo = 0;
5037 do {
5038 if (ArgNo == NestArgNo) {
5039
5041 if (NestVal->getType() != NestTy)
5042 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
5043 NewArgs.push_back(NestVal);
5044 NewArgAttrs.push_back(NestAttr);
5045 }
5046
5048 break;
5049
5050
5051 NewArgs.push_back(*I);
5052 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
5053
5054 ++ArgNo;
5055 ++I;
5056 } while (true);
5057 }
5058
5059
5060
5061
5062
5063 std::vector<Type*> NewTypes;
5064 NewTypes.reserve(FTy->getNumParams()+1);
5065
5066
5067
5068 {
5069 unsigned ArgNo = 0;
5071 E = FTy->param_end();
5072
5073 do {
5074 if (ArgNo == NestArgNo)
5075
5076 NewTypes.push_back(NestTy);
5077
5079 break;
5080
5081
5082 NewTypes.push_back(*I);
5083
5084 ++ArgNo;
5085 ++I;
5086 } while (true);
5087 }
5088
5089
5090
5091 FunctionType *NewFTy =
5092 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
5093 AttributeList NewPAL =
5094 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
5095 Attrs.getRetAttrs(), NewArgAttrs);
5096
5099
5103 II->getUnwindDest(), NewArgs, OpBundles);
5107 NewCaller =
5109 CBI->getIndirectDests(), NewArgs, OpBundles);
5110 cast(NewCaller)->setCallingConv(CBI->getCallingConv());
5112 } else {
5113 NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles);
5119 }
5121
5122 return NewCaller;
5123 }
5124 }
5125
5126
5127
5128
5130 return &Call;
5131}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG)
static Type * getPromotedType(Type *Ty)
Return the specified type promoted as it would be to pass though a va_arg area.
Definition InstCombineCalls.cpp:97
static Instruction * createOverflowTuple(IntrinsicInst *II, Value *Result, Constant *Overflow)
Creates a result tuple for an overflow intrinsic II with a given Result and a constant Overflow value...
Definition InstCombineCalls.cpp:851
static IntrinsicInst * findInitTrampolineFromAlloca(Value *TrampMem)
Definition InstCombineCalls.cpp:4222
static bool removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC, std::function< bool(const IntrinsicInst &)> IsStart)
Definition InstCombineCalls.cpp:800
static bool inputDenormalIsDAZ(const Function &F, const Type *Ty)
Definition InstCombineCalls.cpp:904
static Instruction * reassociateMinMaxWithConstantInOperand(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If this min/max has a matching min/max operand with a constant, try to push the constant operand into...
Definition InstCombineCalls.cpp:1323
static bool isIdempotentBinaryIntrinsic(Intrinsic::ID IID)
Helper to match idempotent binary intrinsics, namely, intrinsics where f(f(x, y), y) == f(x,...
Definition InstCombineCalls.cpp:1544
static bool signBitMustBeTheSame(Value *Op0, Value *Op1, const SimplifyQuery &SQ)
Return true if two values Op0 and Op1 are known to have the same sign.
Definition InstCombineCalls.cpp:1137
static Value * optimizeModularFormat(CallInst *CI, IRBuilderBase &B)
Definition InstCombineCalls.cpp:4129
static Instruction * moveAddAfterMinMax(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0.
Definition InstCombineCalls.cpp:1150
static Instruction * simplifyInvariantGroupIntrinsic(IntrinsicInst &II, InstCombinerImpl &IC)
This function transforms launder.invariant.group and strip.invariant.group like: launder(launder(x)) ...
Definition InstCombineCalls.cpp:446
static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E, unsigned NumOperands)
Definition InstCombineCalls.cpp:780
static std::optional< bool > getKnownSign(Value *Op, const SimplifyQuery &SQ)
Definition InstCombineCalls.cpp:1110
static cl::opt< unsigned > GuardWideningWindow("instcombine-guard-widening-window", cl::init(3), cl::desc("How wide an instruction window to bypass looking for " "another guard"))
static bool hasUndefSource(AnyMemTransferInst *MI)
Recognize a memcpy/memmove from a trivially otherwise unused alloca.
Definition InstCombineCalls.cpp:108
static Instruction * factorizeMinMaxTree(IntrinsicInst *II)
Reduce a sequence of min/max intrinsics with a common operand.
Definition InstCombineCalls.cpp:1351
static Value * simplifyNeonTbl1(const IntrinsicInst &II, InstCombiner::BuilderTy &Builder)
Convert a table lookup to shufflevector if the mask is constant.
Definition InstCombineCalls.cpp:744
static Instruction * foldClampRangeOfTwo(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
If we have a clamp pattern like max (min X, 42), 41 – where the output can only be one of two possibl...
Definition InstCombineCalls.cpp:1249
static Value * simplifyReductionOperand(Value *Arg, bool CanReorderLanes)
Definition InstCombineCalls.cpp:1587
static IntrinsicInst * findInitTrampolineFromBB(IntrinsicInst *AdjustTramp, Value *TrampMem)
Definition InstCombineCalls.cpp:4261
static Value * foldIntrinsicUsingDistributiveLaws(IntrinsicInst *II, InstCombiner::BuilderTy &Builder)
Definition InstCombineCalls.cpp:1675
static std::optional< bool > getKnownSignOrZero(Value *Op, const SimplifyQuery &SQ)
Definition InstCombineCalls.cpp:1124
static Value * foldMinimumOverTrailingOrLeadingZeroCount(Value *I0, Value *I1, const DataLayout &DL, InstCombiner::BuilderTy &Builder)
Fold an unsigned minimum of trailing or leading zero bits counts: umin(cttz(CtOp, ZeroUndef),...
Definition InstCombineCalls.cpp:1620
static Value * foldIdempotentBinaryIntrinsicRecurrence(InstCombinerImpl &IC, IntrinsicInst *II)
Attempt to simplify value-accumulating recurrences of kind: umax.acc = phi i8 [ umax,...
Definition InstCombineCalls.cpp:1567
static Instruction * foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC)
Definition InstCombineCalls.cpp:652
static Instruction * foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC)
Definition InstCombineCalls.cpp:476
static IntrinsicInst * findInitTrampoline(Value *Callee)
Definition InstCombineCalls.cpp:4282
static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask, const Function &F, Type *Ty)
Definition InstCombineCalls.cpp:912
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
Definition InstCombineCalls.cpp:1653
static Value * reassociateMinMaxWithConstants(IntrinsicInst *II, IRBuilderBase &Builder, const SimplifyQuery &SQ)
If this min/max has a constant operand and an operand that is a matching min/max with a constant oper...
Definition InstCombineCalls.cpp:1289
static CallInst * canonicalizeConstantArg0ToArg1(CallInst &Call)
Definition InstCombineCalls.cpp:838
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool inputDenormalIsIEEE(DenormalMode Mode)
Return true if it's possible to assume IEEE treatment of input denormals in F for Val.
static const Function * getCalledFunction(const Value *V)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
const SmallVectorImpl< MachineOperand > & Cond
This file implements the SmallBitVector class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
static APSInt getMinValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the minimum integer value with the given bit width and signedness.
static APSInt getMaxValue(uint32_t numBits, bool Unsigned)
Return the APSInt representing the maximum integer value with the given bit width and signedness.
This class represents any memset intrinsic.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
static LLVM_ABI AttributeSet get(LLVMContext &C, const AttrBuilder &B)
static LLVM_ABI Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
static LLVM_ABI Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
static LLVM_ABI Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes)
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
InstListType::reverse_iterator reverse_iterator
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI bool isSigned() const
Whether the intrinsic is signed or unsigned.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static BinaryOperator * CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void setCallingConv(CallingConv::ID CC)
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
LLVM_ABI void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool isInAllocaArgument(unsigned ArgNo) const
Determine whether this argument is passed in an alloca.
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
uint64_t getParamDereferenceableBytes(unsigned i) const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
Value * getCalledOperand() const
void setAttributes(AttributeList A)
Set the attributes for this call.
Attribute getFnAttr(StringRef Kind) const
Get the attribute of a given kind for the function.
bool doesNotThrow() const
Determine if the call cannot unwind.
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
Value * getReturnedArgOperand() const
If one of the arguments has the 'returned' attribute, returns its operand value.
static LLVM_ABI CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
void setCalledOperand(Value *V)
static LLVM_ABI CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
bool hasOperandBundles() const
Return true if this User has any operand bundles.
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This class represents a function call, abstracting a target machine's calling convention.
bool isNoTailCall() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
bool isMustTailCall() const
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Predicate getUnorderedPredicate() const
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
static LLVM_ABI Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
static LLVM_ABI ConstantPtrAuth * get(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc, Constant *DeactivationSymbol)
Return a pointer signed with the specified parameters.
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
LLVM_ABI ConstantRange zextOrTrunc(uint32_t BitWidth) const
Make this range have the bit width given by BitWidth.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Lightweight error class with error context and mandatory checking.
static FMFSource intersect(Value *A, Value *B)
Intersect the FMF from two instructions.
This class represents an extension of floating point types.
Convenience struct for specifying and reasoning about fast-math flags.
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
An instruction for ordering other memory operations.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Class to represent function types.
Type::subtype_iterator param_iterator
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool isConvergent() const
Determine if the call is convergent.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
AttributeList getAttributes() const
Return the attribute list for this Function.
bool doesNotThrow() const
Determine if the function cannot unwind.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
LLVM_ABI Value * getBasePtr() const
unsigned getBasePtrIndex() const
The index into the associate statepoint's argument list which contains the base pointer of the pointe...
LLVM_ABI Value * getDerivedPtr() const
unsigned getDerivedPtrIndex() const
The index into the associate statepoint's argument list which contains the pointer whose relocation t...
std::vector< const GCRelocateInst * > getGCRelocates() const
Get list of all gc reloactes linked to this statepoint May contain several relocations for the same b...
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
PointerType * getType() const
Global values are always pointers.
Common base class shared among various IRBuilders.
LLVM_ABI Value * CreateLaunderInvariantGroup(Value *Ptr)
Create a launder.invariant.group intrinsic call.
ConstantInt * getTrue()
Get the constant value for i1 true.
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
LLVM_ABI Value * CreateStripInvariantGroup(Value *Ptr)
Create a strip.invariant.group intrinsic call.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
KnownFPClass computeKnownFPClass(Value *Val, FastMathFlags FMF, FPClassTest Interested=fcAllFlags, const Instruction *CtxI=nullptr, unsigned Depth=0) const
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
bool SimplifyDemandedBits(Instruction *I, unsigned Op, const APInt &DemandedMask, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0) override
This form of SimplifyDemandedBits simplifies the specified instruction operand if possible,...
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false, bool SimplifyBothArms=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * SimplifyAnyMemSet(AnyMemSetInst *MI)
Definition InstCombineCalls.cpp:220
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitCallBrInst(CallBrInst &CBI)
Definition InstCombineCalls.cpp:4125
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Value * foldReversedIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are reverses, try to pull the reverse after the intrinsic.
Definition InstCombineCalls.cpp:1468
Value * tryGetLog2(Value *Op, bool AssumeNonZero)
Instruction * visitFenceInst(FenceInst &FI)
Definition InstCombineCalls.cpp:4092
Instruction * foldShuffledIntrinsicOperands(IntrinsicInst *II)
If all arguments of the intrinsic are unary shuffles with the same mask, try to shuffle after the int...
Definition InstCombineCalls.cpp:1411
Instruction * visitInvokeInst(InvokeInst &II)
Definition InstCombineCalls.cpp:4120
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Instruction * visitVAEndInst(VAEndInst &I)
Definition InstCombineCalls.cpp:827
Instruction * matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps, bool MatchBitReversals)
Given an initial instruction, check to see if it is the root of a bswap/bitreverse idiom.
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * SimplifyAnyMemTransfer(AnyMemTransferInst *MI)
Definition InstCombineCalls.cpp:118
OverflowResult computeOverflow(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const
Instruction * visitCallInst(CallInst &CI)
CallInst simplification.
Definition InstCombineCalls.cpp:1736
unsigned ComputeMaxSignificantBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
DominatorTree & getDominatorTree() const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
AssumptionCache & getAssumptionCache() const
OptimizationRemarkEmitter & ORE
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool mayWriteToMemory() const LLVM_READONLY
Return true if this instruction may modify memory.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
bool isTerminator() const
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI std::optional< InstListType::iterator > getInsertionPointAfterDef()
Get the first insertion point at which the result of this instruction is defined.
LLVM_ABI bool isIdenticalTo(const Instruction *I) const LLVM_READONLY
Return true if the specified instruction is exactly identical to the current one.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
ICmpInst::Predicate getPredicate() const
Returns the comparison predicate underlying the intrinsic.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
A Module instance is used to store all the information related to an LLVM module.
StringRef getName() const
Get a short "name" for the module.
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
bool isCommutative() const
Return true if the instruction is commutative.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
bool test(unsigned Idx) const
bool all() const
Returns true if all bits are set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Class to represent struct types.
static LLVM_ABI bool isCallingConvCCompatible(CallBase *CI)
Returns true if call site / callee has cdecl-compatible calling conventions.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
static UnaryOperator * CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
This represents the llvm.va_end intrinsic.
static LLVM_ABI void ValueIsDeleted(Value *V)
static LLVM_ABI void ValueIsRAUWd(Value *Old, Value *New)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
static constexpr uint64_t MaximumAlignment
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
static LLVM_ABI void dropDroppableUse(Use &U)
Remove the droppable use U.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
static constexpr unsigned MaxAlignmentExponent
The maximum alignment for instructions.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
self_iterator getIterator()
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_IntrinsicIntrinsic::fabs(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
match_combine_or< match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > >, OpTy > m_ZExtOrSExtOrSelf(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
cst_pred_ty< is_strictlypositive > m_StrictlyPositive()
Match an integer or vector of strictly positive values.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
@ System
Synchronized with respect to all concurrently executing threads.
SmallVector< DbgVariableRecord * > getDVRAssignmentMarkers(const Instruction *Inst)
Return a range of dbg_assign records for which Inst performs the assignment they encode.
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
DiagnosticInfoOptimizationBase::Argument NV
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI cl::opt< bool > EnableKnowledgeRetention
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form , return an APInt (of bitwidth Y) for each lane which may be ...
LLVM_ABI RetainedKnowledge simplifyRetainedKnowledge(AssumeInst *Assume, RetainedKnowledge RK, AssumptionCache *AC, DominatorTree *DT)
canonicalize the RetainedKnowledge RK.
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
LLVM_ABI Value * getAllocAlignment(const CallBase *V, const TargetLibraryInfo *TLI)
Gets the alignment argument for an aligned_alloc-like function, using either built-in knowledge based...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI RetainedKnowledge getKnowledgeFromOperandInAssume(AssumeInst &Assume, unsigned Idx)
Retreive the information help by Assume on the operand at index Idx.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
LLVM_ABI bool isAssumeWithEmptyBundle(const AssumeInst &Assume)
Return true iff the operand bundles of the provided llvm.assume doesn't contain any valuable informat...
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
constexpr T MinAlign(U A, V B)
A and B are either alignments or offsets.
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
auto dyn_cast_or_null(const Y &Val)
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI FPClassTest fneg(FPClassTest Mask)
Return the test mask which returns true if the value's sign bit is flipped.
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
void sort(IteratorTy Start, IteratorTy End)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
auto find_if_not(R &&Range, UnaryPredicate P)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
bool isAtLeastOrStrongerThan(AtomicOrdering AO, AtomicOrdering Other)
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI AssumeInst * buildAssumeFromKnowledge(ArrayRef< RetainedKnowledge > Knowledge, Instruction *CtxI, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Build and return a new assume created from the provided knowledge if the knowledge in the assume is f...
LLVM_ABI FPClassTest inverse_fabs(FPClassTest Mask)
Return the test mask which returns true after fabs is applied to the value.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
iterator_range< SplittingIterator > split(StringRef Str, StringRef Separator)
Split the specified string over a separator and return a range-compatible iterable over its partition...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
@ Mod
The access may modify the value stored in memory.
LLVM_ABI Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
OperandBundleDefT< Value * > OperandBundleDef
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isDereferenceablePointer(const Value *V, Type *Ty, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if this is always a dereferenceable pointer.
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI std::optional< APInt > getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, function_ref< const Value *(const Value *)> Mapper=[](const Value *V) { return V;})
Return the size of the requested allocation.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
This struct is a compact representation of a valid (non-zero power of two) alignment.
@ IEEE
IEEE-754 denormal numbers preserved.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
unsigned getBitWidth() const
Get the bit width of this value.
bool isNonZero() const
Returns true if this value is known to be non-zero.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
bool isNegative() const
Returns true if this value is known to be negative.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
bool isAllOnes() const
Returns true if value is all one bits.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
A lightweight accessor for an operand bundle meant to be passed around by value.
StringRef getTagName() const
Return the tag of this operand bundle as a string.
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
Represent one information held inside an operand bundle of an llvm.assume.
Attribute::AttrKind AttrKind
SelectPatternFlavor Flavor
SimplifyQuery getWithInstruction(const Instruction *I) const