Data — ArviZ dev documentation (original) (raw)

Inference library converters#

from_beanmachine([sampler, coords, dims]) Convert Bean Machine MonteCarloSamples object into an InferenceData object.
from_cmdstan([posterior, ...]) Convert CmdStan data into an InferenceData object.
from_cmdstanpy([posterior, ...]) Convert CmdStanPy data into an InferenceData object.
from_emcee([sampler, var_names, slices, ...]) Convert emcee data into an InferenceData object.
from_numpyro([posterior, prior, ...]) Convert NumPyro data into an InferenceData object.
from_pyjags([posterior, prior, ...]) Convert PyJAGS posterior samples to an ArviZ inference data object.
from_pyro([posterior, prior, ...]) Convert Pyro data into an InferenceData object.
from_pystan([posterior, ...]) Convert PyStan data into an InferenceData object.

IO / General conversion#

convert_to_inference_data(obj, *[, group, ...]) Convert a supported object to an InferenceData object.
convert_to_dataset(obj, *[, group, coords, dims]) Convert a supported object to an xarray dataset.
dict_to_dataset(data, *[, attrs, library, ...]) Convert a dictionary or pytree of numpy arrays to an xarray.Dataset.
from_datatree(datatree) Create an InferenceData object from a DataTree.
from_dict([posterior, posterior_predictive, ...]) Convert Dictionary data into an InferenceData object.
from_json(filename) Initialize object from a json file.
from_netcdf(filename, *[, engine, ...]) Load netcdf file back into an arviz.InferenceData.
to_datatree(data) Convert InferenceData object to a DataTree.
to_json(idata, filename) Save dataset as a json file.
to_netcdf(data, filename, *[, group, ...]) Save dataset as a netcdf file.
from_zarr(store) Initialize object from a zarr store or path.
to_zarr(data[, store]) Convert data to zarr, optionally saving to disk if store is provided.

General functions#

concat(*args[, dim, copy, inplace, reset_dim]) Concatenate InferenceData objects.
extract(data[, group, combined, var_names, ...]) Extract an InferenceData group or subset of it.

Data examples#

list_datasets() Get a string representation of all available datasets with descriptions.
load_arviz_data([dataset, data_home]) Load a local or remote pre-made dataset.