OneHotEncoder (original) (raw)

class sklearn.preprocessing.OneHotEncoder(*, categories='auto', drop=None, sparse_output=True, dtype=<class 'numpy.float64'>, handle_unknown='error', min_frequency=None, max_categories=None, feature_name_combiner='concat')[source]#

Encode categorical features as a one-hot numeric array.

The input to this transformer should be an array-like of integers or strings, denoting the values taken on by categorical (discrete) features. The features are encoded using a one-hot (aka ‘one-of-K’ or ‘dummy’) encoding scheme. This creates a binary column for each category and returns a sparse matrix or dense array (depending on the sparse_outputparameter).

By default, the encoder derives the categories based on the unique values in each feature. Alternatively, you can also specify the categoriesmanually.

This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels.

Note: a one-hot encoding of y labels should use a LabelBinarizer instead.

Read more in the User Guide. For a comparison of different encoders, refer to:Comparing Target Encoder with Other Encoders.

Parameters:

categories‘auto’ or a list of array-like, default=’auto’

Categories (unique values) per feature:

The used categories can be found in the categories_ attribute.

Added in version 0.20.

drop{‘first’, ‘if_binary’} or an array-like of shape (n_features,), default=None

Specifies a methodology to use to drop one of the categories per feature. This is useful in situations where perfectly collinear features cause problems, such as when feeding the resulting data into an unregularized linear regression model.

However, dropping one category breaks the symmetry of the original representation and can therefore induce a bias in downstream models, for instance for penalized linear classification or regression models.

When max_categories or min_frequency is configured to group infrequent categories, the dropping behavior is handled after the grouping.

Added in version 0.21: The parameter drop was added in 0.21.

Changed in version 0.23: The option drop='if_binary' was added in 0.23.

Changed in version 1.1: Support for dropping infrequent categories.

sparse_outputbool, default=True

When True, it returns a scipy.sparse.csr_matrix, i.e. a sparse matrix in “Compressed Sparse Row” (CSR) format.

Added in version 1.2: sparse was renamed to sparse_output

dtypenumber type, default=np.float64

Desired dtype of output.

handle_unknown{‘error’, ‘ignore’, ‘infrequent_if_exist’, ‘warn’}, default=’error’

Specifies the way unknown categories are handled during transform.

Changed in version 1.1: 'infrequent_if_exist' was added to automatically handle unknown categories and infrequent categories.

Added in version 1.6: The option "warn" was added in 1.6.

min_frequencyint or float, default=None

Specifies the minimum frequency below which a category will be considered infrequent.

Added in version 1.1: Read more in the User Guide.

max_categoriesint, default=None

Specifies an upper limit to the number of output features for each input feature when considering infrequent categories. If there are infrequent categories, max_categories includes the category representing the infrequent categories along with the frequent categories. If None, there is no limit to the number of output features.

Added in version 1.1: Read more in the User Guide.

feature_name_combiner“concat” or callable, default=”concat”

Callable with signature def callable(input_feature, category) that returns a string. This is used to create feature names to be returned byget_feature_names_out.

"concat" concatenates encoded feature name and category withfeature + "_" + str(category).E.g. feature X with values 1, 6, 7 create feature names X_1, X_6, X_7.

Added in version 1.3.

Attributes:

**categories_**list of arrays

The categories of each feature determined during fitting (in order of the features in X and corresponding with the output of transform). This includes the category specified in drop(if any).

**drop_idx_**array of shape (n_features,)

If infrequent categories are enabled by setting min_frequency ormax_categories to a non-default value and drop_idx[i] corresponds to a infrequent category, then the entire infrequent category is dropped.

Changed in version 0.23: Added the possibility to contain None values.

infrequent_categories_list of ndarray

Infrequent categories for each feature.

**n_features_in_**int

Number of features seen during fit.

Added in version 1.0.

**feature_names_in_**ndarray of shape (n_features_in_,)

Names of features seen during fit. Defined only when Xhas feature names that are all strings.

Added in version 1.0.

feature_name_combinercallable or None

Callable with signature def callable(input_feature, category) that returns a string. This is used to create feature names to be returned byget_feature_names_out.

Added in version 1.3.

Examples

Given a dataset with two features, we let the encoder find the unique values per feature and transform the data to a binary one-hot encoding.

from sklearn.preprocessing import OneHotEncoder

One can discard categories not seen during fit:

enc = OneHotEncoder(handle_unknown='ignore') X = [['Male', 1], ['Female', 3], ['Female', 2]] enc.fit(X) OneHotEncoder(handle_unknown='ignore') enc.categories_ [array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)] enc.transform([['Female', 1], ['Male', 4]]).toarray() array([[1., 0., 1., 0., 0.], [0., 1., 0., 0., 0.]]) enc.inverse_transform([[0, 1, 1, 0, 0], [0, 0, 0, 1, 0]]) array([['Male', 1], [None, 2]], dtype=object) enc.get_feature_names_out(['gender', 'group']) array(['gender_Female', 'gender_Male', 'group_1', 'group_2', 'group_3'], ...)

One can always drop the first column for each feature:

drop_enc = OneHotEncoder(drop='first').fit(X) drop_enc.categories_ [array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)] drop_enc.transform([['Female', 1], ['Male', 2]]).toarray() array([[0., 0., 0.], [1., 1., 0.]])

Or drop a column for feature only having 2 categories:

drop_binary_enc = OneHotEncoder(drop='if_binary').fit(X) drop_binary_enc.transform([['Female', 1], ['Male', 2]]).toarray() array([[0., 1., 0., 0.], [1., 0., 1., 0.]])

One can change the way feature names are created.

def custom_combiner(feature, category): ... return str(feature) + "" + type(category).name + "" + str(category) custom_fnames_enc = OneHotEncoder(feature_name_combiner=custom_combiner).fit(X) custom_fnames_enc.get_feature_names_out() array(['x0_str_Female', 'x0_str_Male', 'x1_int_1', 'x1_int_2', 'x1_int_3'], dtype=object)

Infrequent categories are enabled by setting max_categories or min_frequency.

import numpy as np X = np.array([["a"] * 5 + ["b"] * 20 + ["c"] * 10 + ["d"] * 3], dtype=object).T ohe = OneHotEncoder(max_categories=3, sparse_output=False).fit(X) ohe.infrequent_categories_ [array(['a', 'd'], dtype=object)] ohe.transform([["a"], ["b"]]) array([[0., 0., 1.], [1., 0., 0.]])

fit(X, y=None)[source]#

Fit OneHotEncoder to X.

Parameters:

Xarray-like of shape (n_samples, n_features)

The data to determine the categories of each feature.

yNone

Ignored. This parameter exists only for compatibility withPipeline.

Returns:

self

Fitted encoder.

fit_transform(X, y=None, **fit_params)[source]#

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_paramsand returns a transformed version of X.

Parameters:

Xarray-like of shape (n_samples, n_features)

Input samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None

Target values (None for unsupervised transformations).

**fit_paramsdict

Additional fit parameters.

Returns:

X_newndarray array of shape (n_samples, n_features_new)

Transformed array.

get_feature_names_out(input_features=None)[source]#

Get output feature names for transformation.

Parameters:

input_featuresarray-like of str or None, default=None

Input features.

Returns:

feature_names_outndarray of str objects

Transformed feature names.

get_metadata_routing()[source]#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:

routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)[source]#

Get parameters for this estimator.

Parameters:

deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

paramsdict

Parameter names mapped to their values.

property infrequent_categories_#

Infrequent categories for each feature.

inverse_transform(X)[source]#

Convert the data back to the original representation.

When unknown categories are encountered (all zeros in the one-hot encoding), None is used to represent this category. If the feature with the unknown category has a dropped category, the dropped category will be its inverse.

For a given input feature, if there is an infrequent category, ‘infrequent_sklearn’ will be used to represent the infrequent category.

Parameters:

X{array-like, sparse matrix} of shape (n_samples, n_encoded_features)

The transformed data.

Returns:

X_trndarray of shape (n_samples, n_features)

Inverse transformed array.

set_output(*, transform=None)[source]#

Set output container.

See Introducing the set_output APIfor an example on how to use the API.

Parameters:

transform{“default”, “pandas”, “polars”}, default=None

Configure output of transform and fit_transform.

Added in version 1.4: "polars" option was added.

Returns:

selfestimator instance

Estimator instance.

set_params(**params)[source]#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:

**paramsdict

Estimator parameters.

Returns:

selfestimator instance

Estimator instance.

transform(X)[source]#

Transform X using one-hot encoding.

If sparse_output=True (default), it returns an instance ofscipy.sparse._csr.csr_matrix (CSR format).

If there are infrequent categories for a feature, set by specifyingmax_categories or min_frequency, the infrequent categories are grouped into a single category.

Parameters:

Xarray-like of shape (n_samples, n_features)

The data to encode.

Returns:

X_out{ndarray, sparse matrix} of shape (n_samples, n_encoded_features)

Transformed input. If sparse_output=True, a sparse matrix will be returned.