initialize - Initialize learnable and state parameters of a

  dlnetwork - MATLAB ([original](https://www.mathworks.com/help/deeplearning/ref/dlnetwork.initialize.html)) ([raw](?raw))

Initialize learnable and state parameters of adlnetwork

Since R2021a

Syntax

Description

Tip

Most dlnetwork objects are initialized by default. You only need to manually initialize a dlnetwork if it is uninitialized. You can check if a network is initialized using the Initialized property of thedlnetwork object.

[netUpdated](#mw%5Fe20890bc-65a0-4676-bc78-ca8b72740f72) = initialize([net](#mw%5F9a743689-7093-4df8-a6e8-44399d76dbc5)) initializes any unset learnable parameters and state values of net based on the input sizes defined by the network input layers. Any learnable or state parameters that already contain values remain unchanged.

A network with unset, empty values for learnable and state parameters is_uninitialized_. You must initialize an uninitializeddlnetwork before you can use it. By default, dlnetwork objects are constructed with initial parameters and do not need initializing.

example

[netUpdated](#mw%5Fe20890bc-65a0-4676-bc78-ca8b72740f72) = initialize([net](#mw%5F9a743689-7093-4df8-a6e8-44399d76dbc5),[X1,...,XN](#mw%5F3af1d784-472c-4f9b-872d-d8c26929d3e7)) initializes any unset learnable parameters and state values of net based on the example network inputs or network data layout objects X1,...,XN. Use this syntax when the network has inputs that are not connected to an input layer.

example

Examples

collapse all

Initialize dlnetwork Containing Input Layer

Define a simple image classification network as a layer array.

layers = [ imageInputLayer([28 28 1],Normalization="none") convolution2dLayer(5,20) batchNormalizationLayer reluLayer fullyConnectedLayer(10) softmaxLayer];

Convert the layer graph to a dlnetwork object. Create an uninitialized dlnetwork object by setting the Initialize option to false.

net = dlnetwork(layers,Initialize=false);

View the learnable parameters of the network. Because the network is not initialized, the values are empty.

ans=6×3 table Layer Parameter Value
___________ _________ ____________

"conv"         "Weights"    {0x0 double}
"conv"         "Bias"       {0x0 double}
"batchnorm"    "Offset"     {0x0 double}
"batchnorm"    "Scale"      {0x0 double}
"fc"           "Weights"    {0x0 double}
"fc"           "Bias"       {0x0 double}

Initialize the learnable parameters of the network using the initialize function.

View the learnable parameters of the network. Because the network is now initialized, the values are nonempty with sizes inferred using the size of the input layer.

ans=6×3 table Layer Parameter Value
___________ _________ ___________________

"conv"         "Weights"    { 5x5x1x20 dlarray}
"conv"         "Bias"       { 1x1x20   dlarray}
"batchnorm"    "Offset"     { 1x1x20   dlarray}
"batchnorm"    "Scale"      { 1x1x20   dlarray}
"fc"           "Weights"    {10x11520  dlarray}
"fc"           "Bias"       {10x1      dlarray}

Initialize dlnetwork Not Containing Input Layer

Define a multi-input image classification network.

numFilters = 24;

net = dlnetwork;

layersBranch1 = [ convolution2dLayer(3,6*numFilters,Padding="same",Stride=2) groupNormalizationLayer("all-channels") reluLayer convolution2dLayer(3,numFilters,Padding="same") groupNormalizationLayer("channel-wise") additionLayer(2,Name="add") reluLayer fullyConnectedLayer(10) softmaxLayer];

layersBranch2 = [ convolution2dLayer(1,numFilters,Name="conv_branch") groupNormalizationLayer("all-channels",Name="groupnorm_branch")];

net = addLayers(net, layersBranch1); net = addLayers(net,layersBranch2); net = connectLayers(net,"groupnorm_branch","add/in2");

Visualize the layers in a plot.

Figure contains an axes object. The axes object contains an object of type graphplot.

View the learnable parameters of the network. Because the network is not initialized, the values are empty.

ans=14×3 table Layer Parameter Value
__________________ _________ ____________

"conv_1"              "Weights"    {0x0 double}
"conv_1"              "Bias"       {0x0 double}
"groupnorm_1"         "Offset"     {0x0 double}
"groupnorm_1"         "Scale"      {0x0 double}
"conv_2"              "Weights"    {0x0 double}
"conv_2"              "Bias"       {0x0 double}
"groupnorm_2"         "Offset"     {0x0 double}
"groupnorm_2"         "Scale"      {0x0 double}
"fc"                  "Weights"    {0x0 double}
"fc"                  "Bias"       {0x0 double}
"conv_branch"         "Weights"    {0x0 double}
"conv_branch"         "Bias"       {0x0 double}
"groupnorm_branch"    "Offset"     {0x0 double}
"groupnorm_branch"    "Scale"      {0x0 double}

View the names of the network inputs.

ans = 1x2 cell {'conv_1'} {'conv_branch'}

Create random dlarray objects representing inputs to the network. Use an example input of size 64-by-64 with 3 channels for the main branch of the network. Use an input of size 64-by-64 with 18 channels for the second branch.

inputSize = [64 64 3]; inputSizeBranch = [32 32 18];

X1 = dlarray(rand(inputSize),"SSCB"); X2 = dlarray(rand(inputSizeBranch),"SSCB");

Initialize the learnable parameters of the network using the initialize function and specify the example inputs. Specify the inputs with order corresponding to the InputNames property of the network.

net = initialize(net,X1,X2);

View the learnable parameters of the network. Because the network is now initialized, the values are nonempty with sizes inferred using the size of the input data.

ans=14×3 table Layer Parameter Value
__________________ _________ _____________________

"conv_1"              "Weights"    { 3x3x3x144  dlarray}
"conv_1"              "Bias"       { 1x1x144    dlarray}
"groupnorm_1"         "Offset"     { 1x1x144    dlarray}
"groupnorm_1"         "Scale"      { 1x1x144    dlarray}
"conv_2"              "Weights"    { 3x3x144x24 dlarray}
"conv_2"              "Bias"       { 1x1x24     dlarray}
"groupnorm_2"         "Offset"     { 1x1x24     dlarray}
"groupnorm_2"         "Scale"      { 1x1x24     dlarray}
"conv_branch"         "Weights"    { 1x1x18x24  dlarray}
"conv_branch"         "Bias"       { 1x1x24     dlarray}
"groupnorm_branch"    "Offset"     { 1x1x24     dlarray}
"groupnorm_branch"    "Scale"      { 1x1x24     dlarray}
"fc"                  "Weights"    {10x24576    dlarray}
"fc"                  "Bias"       {10x1        dlarray}

Initialize Network using Network Data Layout Objects

Create an uninitialized dlnetwork object that has two unconnected inputs.

layers = [ convolution2dLayer(5,16,Name="conv") batchNormalizationLayer reluLayer fullyConnectedLayer(50) flattenLayer concatenationLayer(1,2,Name="cat") fullyConnectedLayer(10) softmaxLayer];

net = dlnetwork(layers,Initialize=false);

View the input names of the network.

ans = 1x2 cell {'conv'} {'cat/in2'}

Create network data layout objects that represent input data for the inputs. For the first input, specify a batch of 28-by-28 grayscale images. For the second input specify a batch of single-channel feature data.

layout1 = networkDataLayout([28 28 1 NaN],"SSCB"); layout2 = networkDataLayout([1 NaN],"CB");

Initialize the network using the network data layout objects.

net = initialize(net,layout1,layout2)

net = dlnetwork with properties:

     Layers: [8x1 nnet.cnn.layer.Layer]
Connections: [7x2 table]
 Learnables: [8x3 table]
      State: [2x3 table]
 InputNames: {'conv'  'cat/in2'}
OutputNames: {'softmax'}
Initialized: 1

View summary with summary.

Input Arguments

collapse all

net — Uninitialized network

dlnetwork object

Uninitialized network, specified as a dlnetwork object.

X1,...,XN — Example network inputs or data layouts

formatted dlarray object | formatted networkDataLayout object

Example data or data layouts to use to determine the size and formats of learnable and state parameters, specified as formatted dlarray objects or formatted networkDataLayout objects. The software propagates X1,...XN through the network to determine the appropriate sizes and formats of the learnable and state parameters of thedlnetwork object and initializes any unset learnable or state parameters.

Provide example inputs in the same order as the order specified by theInputNames property of the input network.

Note

Automatic initialization uses only the size and format information of the input data. For initialization that depends on the values on the input data, you must initialize the learnable parameters manually.

Output Arguments

collapse all

netUpdated — Initialized network

dlnetwork object

Initialized network, returned as an initialized dlnetwork object.

The initialize function does not preserve quantization information. If the input network is a quantized network, then the output network does not contain quantization information.

Version History

Introduced in R2021a

expand all

R2023b: Initialize networks containing input layers with unset normalization statistics

Input layers such as imageInputLayer and sequenceInputLayer contain properties that networks use for data normalization. These properties are Mean,StandardDeviation, Min, andMax. The software uses these properties to apply the data normalization method defined by the Normalization property of the layer.

Starting in R2023b, when you initialize a network by creating an initialized dlnetwork or by using the initialize function, the software initializes the Mean,StandardDeviation, Min, andMax properties of input layers if you do not set them when you create the layer and if the normalization method requires them. For normalization methods that use two properties, for example, zscore, the software initializes those properties only if you do not set either property when you create the layer.

By default, the software automatically calculates the normalization statistics during training. To customize the normalization, set the Mean,StandardDeviation, Min, andMax properties of input layers manually.

In previous releases, the software errors when you initialize a network containing an input layer that uses a normalization method requiring properties that you do not specify when you create the layer.