Codazzi tensor (original) (raw)

Property Value
dbo:abstract Els tensors de Codazzi (així anomenats pel seu descobridor, Delfino Codazzi) apareixen de manera natural en l'estudi de les varietats riemannianes amb curvatura harmònica o tensor de Weyl harmonic. De fet, l'existència de tensors de Codazzi imposa condicions estrictes al tensor de curvatura de la varietat. (ca) In the mathematical field of differential geometry, a Codazzi tensor (named after Delfino Codazzi) is a symmetric 2-tensor whose covariant derivative is also symmetric. Such tensors arise naturally in the study of Riemannian manifolds with harmonic curvature or harmonic Weyl tensor. In fact, existence of Codazzi tensors impose strict conditions on the curvature tensor of the manifold. Also, the second fundamental form of an immersed hypersurface in a space form (relative to a local choice of normal field) is a Codazzi tensor. (en)
dbo:wikiPageID 35890862 (xsd:integer)
dbo:wikiPageLength 3281 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1002148671 (xsd:integer)
dbo:wikiPageWikiLink dbr:Riemannian_manifolds dbr:Levi-Civita_connection dbr:Delfino_Codazzi dbr:Harmonic dbr:Weyl–Schouten_theorem dbr:Curvature dbr:Riemann_curvature_tensor dbr:Covariant_derivative dbr:Tensor dbc:Tensors dbr:Differential_geometry dbr:Space_form dbr:Weyl_tensor dbr:Weyl_curvature_tensor
dbp:wikiPageUsesTemplate dbt:Math
dct:subject dbc:Tensors
rdf:type yago:WikicatTensors yago:Abstraction100002137 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Idea105833840 yago:PsychologicalFeature100023100 yago:Quantity105855125 yago:Tensor105864481 yago:Variable105857459
rdfs:comment Els tensors de Codazzi (així anomenats pel seu descobridor, Delfino Codazzi) apareixen de manera natural en l'estudi de les varietats riemannianes amb curvatura harmònica o tensor de Weyl harmonic. De fet, l'existència de tensors de Codazzi imposa condicions estrictes al tensor de curvatura de la varietat. (ca) In the mathematical field of differential geometry, a Codazzi tensor (named after Delfino Codazzi) is a symmetric 2-tensor whose covariant derivative is also symmetric. Such tensors arise naturally in the study of Riemannian manifolds with harmonic curvature or harmonic Weyl tensor. In fact, existence of Codazzi tensors impose strict conditions on the curvature tensor of the manifold. Also, the second fundamental form of an immersed hypersurface in a space form (relative to a local choice of normal field) is a Codazzi tensor. (en)
rdfs:label Tensor de Codazzi (ca) Codazzi tensor (en)
owl:sameAs freebase:Codazzi tensor yago-res:Codazzi tensor wikidata:Codazzi tensor dbpedia-ca:Codazzi tensor https://global.dbpedia.org/id/4i3Xj
prov:wasDerivedFrom wikipedia-en:Codazzi_tensor?oldid=1002148671&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Codazzi_tensor
is dbo:wikiPageWikiLink of dbr:Beltrami's_theorem dbr:Delfino_Codazzi dbr:Weyl–Schouten_theorem
is foaf:primaryTopic of wikipedia-en:Codazzi_tensor