Defective matrix (original) (raw)

About DBpedia

En àlgebra lineal, una matriu defectiva és una matriu quadrada que no té una base completa de vectors propis, i és per això no diagonalizable. En particular, una matriu n × n és defectiva si i només si no té n vectors propis linealment independents. Es crea una base completa augmentant els vectors propis amb vectors propis generalitzats, que són necessaris per solucionar sistemes defectius d'equacions diferencials ordinàries i altres problemes.

Property Value
dbo:abstract En àlgebra lineal, una matriu defectiva és una matriu quadrada que no té una base completa de vectors propis, i és per això no diagonalizable. En particular, una matriu n × n és defectiva si i només si no té n vectors propis linealment independents. Es crea una base completa augmentant els vectors propis amb vectors propis generalitzats, que són necessaris per solucionar sistemes defectius d'equacions diferencials ordinàries i altres problemes. Una matriu n × n defectiva sempre té menys que n valors propis diferents, ja que quan els valors propis són diferents tenen vectors propis linealment independents. En particular, una matriu defectiva té un o més valors propis λ amb multiplicitat algebraica m > 1 (és a dir, les arrels del seu polinomi característic són múltiples), però menys d'm vectors propis linealment independents associats a λ. Si la multiplicitat algebraica de λ supera la seva multiplicitat geomètrica (és a dir, el número de vectors propis linealment independents associats a λ), llavors λ és anomenat valor propi defectiu. Tanmateix, cada valor propi amb multiplicitat algebraica m sempre té m vectors propis generalitzats independents. Una matriu hermítica (o el cas particular en els reals d'una matriu simètrica) o una matriu unitària mai és defectiva. Més generalment, una matriu normal (quin inclou l'hermítica i la unitària com a casos especials) mai és defectiva. (ca) In linear algebra, a defective matrix is a square matrix that does not have a complete basis of eigenvectors, and is therefore not diagonalizable. In particular, an n × n matrix is defective if and only if it does not have n linearly independent eigenvectors. A complete basis is formed by augmenting the eigenvectors with generalized eigenvectors, which are necessary for solving defective systems of ordinary differential equations and other problems. An n × n defective matrix always has fewer than n distinct eigenvalues, since distinct eigenvalues always have linearly independent eigenvectors. In particular, a defective matrix has one or more eigenvalues λ with algebraic multiplicity m > 1 (that is, they are multiple roots of the characteristic polynomial), but fewer than m linearly independent eigenvectors associated with λ. If the algebraic multiplicity of λ exceeds its geometric multiplicity (that is, the number of linearly independent eigenvectors associated with λ), then λ is said to be a defective eigenvalue. However, every eigenvalue with algebraic multiplicity m always has m linearly independent generalized eigenvectors. A Hermitian matrix (or the special case of a real symmetric matrix) or a unitary matrix is never defective; more generally, a normal matrix (which includes Hermitian and unitary as special cases) is never defective. (en)
dbo:wikiPageExternalLink https://archive.org/details/linearalgebraits00stra%7Curl-access=registration%7Cedition=3rd
dbo:wikiPageID 5302952 (xsd:integer)
dbo:wikiPageLength 4067 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1121771354 (xsd:integer)
dbo:wikiPageWikiLink dbr:Basis_(linear_algebra) dbr:Jordan_matrix dbr:Characteristic_polynomial dbr:Matrix_(mathematics) dbr:Matrix_diagonalization dbr:Symmetric_matrix dbr:Eigenvalue dbr:Eigenvector dbr:Generalized_eigenvector dbr:Linear_algebra dbr:Johns_Hopkins_University_Press dbr:Square_matrix dbc:Linear_algebra dbr:Normal_matrix dbr:Jordan_normal_form dbr:Hermitian_matrix dbr:Diagonalizable_matrix dbr:If_and_only_if dbr:Algebraic_multiplicity dbr:Ordinary_differential_equation dbr:Real_number dbr:Geometric_multiplicity dbr:Root_of_a_polynomial dbr:Unitary_matrix dbr:Linearly_independent
dbp:wikiPageUsesTemplate dbt:Citation dbt:Cite_book dbt:Reflist dbt:Short_description dbt:Use_American_English dbt:Matrix_classes
dct:subject dbc:Linear_algebra
gold:hypernym dbr:Matrix
rdf:type dbo:AnatomicalStructure
rdfs:comment En àlgebra lineal, una matriu defectiva és una matriu quadrada que no té una base completa de vectors propis, i és per això no diagonalizable. En particular, una matriu n × n és defectiva si i només si no té n vectors propis linealment independents. Es crea una base completa augmentant els vectors propis amb vectors propis generalitzats, que són necessaris per solucionar sistemes defectius d'equacions diferencials ordinàries i altres problemes. (ca) In linear algebra, a defective matrix is a square matrix that does not have a complete basis of eigenvectors, and is therefore not diagonalizable. In particular, an n × n matrix is defective if and only if it does not have n linearly independent eigenvectors. A complete basis is formed by augmenting the eigenvectors with generalized eigenvectors, which are necessary for solving defective systems of ordinary differential equations and other problems. (en)
rdfs:label Matriu defectiva (ca) Defective matrix (en)
owl:sameAs freebase:Defective matrix wikidata:Defective matrix dbpedia-ca:Defective matrix dbpedia-sl:Defective matrix https://global.dbpedia.org/id/4ixLb
prov:wasDerivedFrom wikipedia-en:Defective_matrix?oldid=1121771354&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Defective_matrix
is dbo:wikiPageDisambiguates of dbr:Defective
is dbo:wikiPageRedirects of dbr:Defective_Matrix dbr:Defective_eigenvalue dbr:Defective_matrices
is dbo:wikiPageWikiLink of dbr:Involutory_matrix dbr:List_of_named_matrices dbr:Matrix_exponential dbr:Symmetric_matrix dbr:Eigendecomposition_of_a_matrix dbr:Eigenvalues_and_eigenvectors dbr:Generalized_eigenvector dbr:Singular_value_decomposition dbr:Defective dbr:Defective_Matrix dbr:Jordan_normal_form dbr:Diagonalizable_matrix dbr:Discrete_Fourier_transform dbr:Markov_chain dbr:Shear_matrix dbr:Defective_eigenvalue dbr:Defective_matrices
is foaf:primaryTopic of wikipedia-en:Defective_matrix