Erdős–Anning theorem (original) (raw)
The Erdős–Anning theorem states that an infinite number of points in the plane can have mutual integer distances only if all the points lie on a straight line. It is named after Paul Erdős and Norman H. Anning, who published a proof of it in 1945.
Property | Value |
---|---|
dbo:abstract | The Erdős–Anning theorem states that an infinite number of points in the plane can have mutual integer distances only if all the points lie on a straight line. It is named after Paul Erdős and Norman H. Anning, who published a proof of it in 1945. (en) En géométrie discrète, le théorème d'Erdős-Anning établit que si une infinité de points d'un espace euclidien sont tous à des distances entières les uns des autres, alors ils sont alignés. (fr) Теорема Эрдёша — Эннинга — утверждение о том, что бесконечное множество точек на плоскости может иметь целые расстояния между точками множества только в том случае, когда все точки лежат на одной прямой. Названа по именам Пала Эрдёша и (англ. Norman Herbert Anning), опубликовавших её доказательство в 1945 году. (ru) O Teorema de Erdős–Anning afirma que um conjunto infinito de pontos no plano que têm distâncias mútuas inteiras pode existir se e somente se todos os pontos estão em linha reta. O nome é uma homenagem a Paul Erdős e , que o provaram em 1945. Uma maneira alternativa de enunciar o teorema é que um conjunto de pontos não colineares no plano com distâncias inteiras pode apenas ser ampliado adicionando-se um número finito de pontos adicionais, antes que não se possa adicionar mais pontos. Mais especificamente, se um conjunto de três ou mais pontos não colineares tem distâncias inteiras, nenhuma excedendo algum número d, então no máximo pontos a distâncias inteiras podem ser adicionados ao conjunto. (pt) |
dbo:wikiPageID | 12600251 (xsd:integer) |
dbo:wikiPageLength | 4373 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1020373851 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Paul_Erdős dbr:Infinite_set dbc:Articles_containing_proofs dbc:Theorems_in_discrete_geometry dbc:Arithmetic_problems_of_plane_geometry dbr:Erdős–Diophantine_graph dbr:Erdős–Ulam_problem dbr:Similarity_(geometry) dbr:Dense_set dbr:Straight_line dbr:Triangle_inequality dbc:Theorems_in_discrete_mathematics dbr:Norman_H._Anning dbr:Hyperbola dbc:Paul_Erdős dbr:Integer dbr:Rational_number dbr:Least_common_denominator |
dbp:title | Erdos-Anning Theorem (en) |
dbp:urlname | Erdos-AnningTheorem (en) |
dbp:wikiPageUsesTemplate | dbt:Main dbt:Mathworld dbt:Reflist dbt:Short_description |
dcterms:subject | dbc:Articles_containing_proofs dbc:Theorems_in_discrete_geometry dbc:Arithmetic_problems_of_plane_geometry dbc:Theorems_in_discrete_mathematics dbc:Paul_Erdős |
rdf:type | yago:WikicatMathematicalTheorems yago:WikicatTheoremsInDiscreteGeometry yago:WikicatTheoremsInDiscreteMathematics yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment | The Erdős–Anning theorem states that an infinite number of points in the plane can have mutual integer distances only if all the points lie on a straight line. It is named after Paul Erdős and Norman H. Anning, who published a proof of it in 1945. (en) En géométrie discrète, le théorème d'Erdős-Anning établit que si une infinité de points d'un espace euclidien sont tous à des distances entières les uns des autres, alors ils sont alignés. (fr) Теорема Эрдёша — Эннинга — утверждение о том, что бесконечное множество точек на плоскости может иметь целые расстояния между точками множества только в том случае, когда все точки лежат на одной прямой. Названа по именам Пала Эрдёша и (англ. Norman Herbert Anning), опубликовавших её доказательство в 1945 году. (ru) O Teorema de Erdős–Anning afirma que um conjunto infinito de pontos no plano que têm distâncias mútuas inteiras pode existir se e somente se todos os pontos estão em linha reta. O nome é uma homenagem a Paul Erdős e , que o provaram em 1945. (pt) |
rdfs:label | Erdős–Anning theorem (en) Théorème d'Erdős-Anning (fr) Теорема Эрдёша — Эннинга (ru) Teorema de Erdős–Anning (pt) |
owl:sameAs | freebase:Erdős–Anning theorem wikidata:Erdős–Anning theorem dbpedia-fr:Erdős–Anning theorem dbpedia-hu:Erdős–Anning theorem dbpedia-pt:Erdős–Anning theorem dbpedia-ru:Erdős–Anning theorem https://global.dbpedia.org/id/3FWXX |
prov:wasDerivedFrom | wikipedia-en:Erdős–Anning_theorem?oldid=1020373851&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Erdős–Anning_theorem |
is dbo:wikiPageRedirects of | dbr:Erdos–Anning_theorem dbr:Erdős-Anning_theorem dbr:Erdos-Anning_theorem |
is dbo:wikiPageWikiLink of | dbr:List_of_scientific_laws_named_after_people dbr:Erdős–Diophantine_graph dbr:Erdős–Ulam_problem dbr:Combinatorial_Geometry_in_the_Plane dbr:Distance_set dbr:Norman_H._Anning dbr:Harborth's_conjecture dbr:Erdos–Anning_theorem dbr:Erdős-Anning_theorem dbr:József_Solymosi dbr:List_of_theorems dbr:List_of_things_named_after_Paul_Erdős dbr:Erdos-Anning_theorem |
is foaf:primaryTopic of | wikipedia-en:Erdős–Anning_theorem |