Fermi–Pasta–Ulam–Tsingou problem (original) (raw)
Das Fermi-Pasta-Ulam-Tsingou-Experiment (häufig auch Fermi-Pasta-Ulam-Experiment genannt) untersucht das Schwingungsverhalten komplexer Systeme. Das überraschende Ergebnis dieses Experiments zählt zu den wesentlichen Beiträgen der Chaosforschung. Außerdem beeinflusste es als eines der ersten Computerexperimente das Verfahren der Simulation als Experimentiertechnik wesentlich.
Property | Value |
---|---|
dbo:abstract | Das Fermi-Pasta-Ulam-Tsingou-Experiment (häufig auch Fermi-Pasta-Ulam-Experiment genannt) untersucht das Schwingungsverhalten komplexer Systeme. Das überraschende Ergebnis dieses Experiments zählt zu den wesentlichen Beiträgen der Chaosforschung. Außerdem beeinflusste es als eines der ersten Computerexperimente das Verfahren der Simulation als Experimentiertechnik wesentlich. (de) In physics, the Fermi–Pasta–Ulam–Tsingou problem or formerly the Fermi–Pasta–Ulam problem was the apparent paradox in chaos theory that many complicated enough physical systems exhibited almost exactly periodic behavior – called Fermi–Pasta–Ulam–Tsingou recurrence (or Fermi–Pasta–Ulam recurrence) – instead of the expected ergodic behavior. This came as a surprise, as Fermi, certainly, expected the system to thermalize in a fairly short time. That is, it was expected for all vibrational modes to eventually appear with equal strength, as per the equipartition theorem, or, more generally, the ergodic hypothesis. Yet here was a system that appeared to evade the ergodic hypothesis. Although the recurrence is easily observed, it eventually became apparent that over much, much longer time periods, the system does eventually thermalize. Multiple competing theories have been proposed to explain the behavior of the system, and it remains a topic of active research. The original intent was to find a physics problem worthy of numerical simulation on the then-new MANIAC computer. Fermi felt that thermalization would pose such a challenge. As such, it represents one of the earliest uses of digital computers in mathematical research; simultaneously, the unexpected results launched the study of nonlinear systems. (en) L'expérience de Fermi-Pasta-Ulam-Tsingou (FPUT) fut la première simulation numérique. Elle étudiait la répartition à long terme de l'énergie d'un système dynamique unidimensionnel de 64 masses couplées entre elles par des ressorts harmoniques perturbés par une faible anharmonicité, sachant qu'un seul mode du système est initialement excité. (fr) In fisica, il problema di Fermi-Pasta-Ulam-Tsingou (noto in precedenza come problema di Fermi-Pasta-Ulam) è l'apparente paradosso in teoria del caos che molti sistemi fisici abbastanza complicati esibiscono un comportamento quasi esattamente periodico, chiamato ricorrenza di Fermi-Pasta-Ulam-Tsingou (o ricorrenza di Fermi-Pasta-Ulam), invece del comportamento ergodico atteso. Ciò fu una sorpresa, poiché Fermi, certamente, si aspettava che il sistema si termalizzasse in un tempo abbastanza breve. Questo vuol dire che ci si aspettava che tutti i modi vibrazionali del sistema alla fine apparissero con lo stesso peso, come previsto dal teorema di equipartizione dell'energia, o, più in generale, dall'ipotesi ergodica. Eppure questo era il caso di un sistema che sembrava ignorare l'ipotesi ergodica. Sebbene fenomeni di ricorrenza siano facilmente osservabili, alla fine diventò evidente che, andando su periodi di tempo molto, molto più lunghi, il sistema alla fine si termalizza. Sono state proposte molteplici teorie concorrenti per spiegare il comportamento del sistema, e rimane un argomento di ricerca attiva. L'intento originale era quello di trovare un problema di fisica che necessitasse di essere simulato numericamente sull'allora nuovo computer MANIAC. Fermi pensava che la termalizzazione costituisse un argomento valido. In quanto tale, rappresenta uno dei primi utilizzi dei computer digitali nella ricerca matematica e fisica; contemporaneamente, i risultati inattesi hanno stimolato lo studio dei sistemi non lineari. (it) フェルミ・パスタ・ウラムの問題(ふぇるみ・ぱすた・うらむのもんだい、英: Fermi–Pasta–Ulam problem)とは、物理学における非線形な相互作用を有するにおけるエネルギー分配の問題。FPU の問題とも呼ばれる。1950年代に、ロスアラモス研究所で電子計算機を用いてこの問題に取り組んだ 3 人の数理物理学者エンリコ・フェルミ、、スタニスワフ・ウラムに名に因む。当初の予想では相互作用が非線形な系ではによって、長時間経過後に各モードにエネルギーが等分配された熱力学的平衡状態に達するはずであったが、計算機実験の結果はそれに反し、初期状態のモードに戻る再帰現象が観測された。後に、この再帰現象はKdV方程式の研究から可積分系におけるソリトンと関連した現象であることが明らかにされた。なお、電子計算機が物理学の研究に活用された初期の事例としても有名である。 (ja) |
dbo:thumbnail | wiki-commons:Special:FilePath/Fermi–Pasta–Ulam–Tsingou_recurrence_preview.gif?width=300 |
dbo:wikiPageExternalLink | http://www.physics.utah.edu/~detar/phys6720/handouts/fpu/FermiCollectedPapers1965.pdf https://stemblab.github.io/fermi-pasta-ulam/%7Ctitle= http://www.scholarpedia.org/article/Fermi-Pasta-Ulam_nonlinear_lattice_oscillations http://people.maths.ox.ac.uk/porterm/papers/fpupop_final.pdf https://www.ams.org/journals/bull/1997-34-04/S0273-0979-97-00732-5/S0273-0979-97-00732-5.pdf http://www.pnas.org/content/pnas/112/14/4208.full.pdf https://www.lanl.gov/discover/publications/national-security-science/2020-winter/mary-tsingou.shtml https://www.lanl.gov/discover/publications/national-security-science/index.php |
dbo:wikiPageID | 2864857 (xsd:integer) |
dbo:wikiPageLength | 19831 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1119007910 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Canonical_transformation dbr:American_Scientist dbr:Scholarpedia dbr:Mixing_(mathematics) dbr:Normal_mode dbr:Young's_modulus dbr:Boris_Chirikov dbr:Hooke's_law dbr:John_Pasta dbr:Joseph_Ford_(physicist) dbr:Mary_Tsingou dbr:Enrico_Fermi dbr:Equipartition_theorem dbr:Frequency dbr:Ergodic_hypothesis dbr:Ergodicity dbr:Los_Alamos_National_Laboratory dbr:Shock_wave dbr:Stanislaw_Ulam dbr:Physical_Review_Letters dbr:Physical_paradox dbr:Physics dbr:Proceedings_of_the_National_Academy_of_Sciences_of_the_United_States_of_America dbr:Richard_Palais dbr:Wave_equation dbr:Dispersion_relation dbr:Lax_pair dbr:Lecture_Notes_in_Physics dbr:Ergodic dbr:Ergodic_theory dbc:Computational_physics dbr:Brillouin_zone dbr:Norman_Zabusky dbr:Taylor's_theorem dbr:Physics_Today dbr:Statistical_mechanics dbc:Nonlinear_systems dbc:Ergodic_theory dbr:Chaos_theory dbc:History_of_physics dbr:Toda_lattice dbr:BBGKY_hierarchy dbr:Martin_David_Kruskal dbr:Bulletin_of_the_American_Mathematical_Society dbr:Phonon dbr:Springer_Science+Business_Media dbr:Korteweg–de_Vries_equation dbr:Newton's_laws_of_motion dbr:Soliton dbr:Nonlinear_system dbr:Resonant_interaction dbr:Phase-locked dbr:MANIAC dbr:Quasi-periodic dbr:Vibrational_mode dbr:Completely_integrable_system dbr:Thermalization dbr:Thermalize dbr:Wave-vector dbr:File:Fermi–Pasta–Ulam–Tsingou_recurrence_preview.gif |
dbp:wikiPageUsesTemplate | dbt:Chaos_theory dbt:Cite_book dbt:Cite_journal dbt:Cite_web dbt:Short_description dbt:Technical dbt:Harvs |
dcterms:subject | dbc:Computational_physics dbc:Nonlinear_systems dbc:Ergodic_theory dbc:History_of_physics |
rdfs:comment | Das Fermi-Pasta-Ulam-Tsingou-Experiment (häufig auch Fermi-Pasta-Ulam-Experiment genannt) untersucht das Schwingungsverhalten komplexer Systeme. Das überraschende Ergebnis dieses Experiments zählt zu den wesentlichen Beiträgen der Chaosforschung. Außerdem beeinflusste es als eines der ersten Computerexperimente das Verfahren der Simulation als Experimentiertechnik wesentlich. (de) L'expérience de Fermi-Pasta-Ulam-Tsingou (FPUT) fut la première simulation numérique. Elle étudiait la répartition à long terme de l'énergie d'un système dynamique unidimensionnel de 64 masses couplées entre elles par des ressorts harmoniques perturbés par une faible anharmonicité, sachant qu'un seul mode du système est initialement excité. (fr) フェルミ・パスタ・ウラムの問題(ふぇるみ・ぱすた・うらむのもんだい、英: Fermi–Pasta–Ulam problem)とは、物理学における非線形な相互作用を有するにおけるエネルギー分配の問題。FPU の問題とも呼ばれる。1950年代に、ロスアラモス研究所で電子計算機を用いてこの問題に取り組んだ 3 人の数理物理学者エンリコ・フェルミ、、スタニスワフ・ウラムに名に因む。当初の予想では相互作用が非線形な系ではによって、長時間経過後に各モードにエネルギーが等分配された熱力学的平衡状態に達するはずであったが、計算機実験の結果はそれに反し、初期状態のモードに戻る再帰現象が観測された。後に、この再帰現象はKdV方程式の研究から可積分系におけるソリトンと関連した現象であることが明らかにされた。なお、電子計算機が物理学の研究に活用された初期の事例としても有名である。 (ja) In physics, the Fermi–Pasta–Ulam–Tsingou problem or formerly the Fermi–Pasta–Ulam problem was the apparent paradox in chaos theory that many complicated enough physical systems exhibited almost exactly periodic behavior – called Fermi–Pasta–Ulam–Tsingou recurrence (or Fermi–Pasta–Ulam recurrence) – instead of the expected ergodic behavior. This came as a surprise, as Fermi, certainly, expected the system to thermalize in a fairly short time. That is, it was expected for all vibrational modes to eventually appear with equal strength, as per the equipartition theorem, or, more generally, the ergodic hypothesis. Yet here was a system that appeared to evade the ergodic hypothesis. Although the recurrence is easily observed, it eventually became apparent that over much, much longer time periods (en) In fisica, il problema di Fermi-Pasta-Ulam-Tsingou (noto in precedenza come problema di Fermi-Pasta-Ulam) è l'apparente paradosso in teoria del caos che molti sistemi fisici abbastanza complicati esibiscono un comportamento quasi esattamente periodico, chiamato ricorrenza di Fermi-Pasta-Ulam-Tsingou (o ricorrenza di Fermi-Pasta-Ulam), invece del comportamento ergodico atteso. Ciò fu una sorpresa, poiché Fermi, certamente, si aspettava che il sistema si termalizzasse in un tempo abbastanza breve. Questo vuol dire che ci si aspettava che tutti i modi vibrazionali del sistema alla fine apparissero con lo stesso peso, come previsto dal teorema di equipartizione dell'energia, o, più in generale, dall'ipotesi ergodica. Eppure questo era il caso di un sistema che sembrava ignorare l'ipotesi ergod (it) |
rdfs:label | Fermi-Pasta-Ulam-Tsingou-Experiment (de) Expérience de Fermi-Pasta-Ulam-Tsingou (fr) Fermi–Pasta–Ulam–Tsingou problem (en) Problema di Fermi-Pasta-Ulam-Tsingou (it) フェルミ・パスタ・ウラムの問題 (ja) |
owl:sameAs | wikidata:Fermi–Pasta–Ulam–Tsingou problem dbpedia-de:Fermi–Pasta–Ulam–Tsingou problem dbpedia-fa:Fermi–Pasta–Ulam–Tsingou problem dbpedia-fr:Fermi–Pasta–Ulam–Tsingou problem dbpedia-it:Fermi–Pasta–Ulam–Tsingou problem dbpedia-ja:Fermi–Pasta–Ulam–Tsingou problem https://global.dbpedia.org/id/4HJCL |
prov:wasDerivedFrom | wikipedia-en:Fermi–Pasta–Ulam–Tsingou_problem?oldid=1119007910&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Fermi–Pasta–Ulam–Tsingou_recurrence_preview.gif |
foaf:isPrimaryTopicOf | wikipedia-en:Fermi–Pasta–Ulam–Tsingou_problem |
is dbo:knownFor of | dbr:Mary_Tsingou dbr:Stanislaw_Ulam |
is dbo:wikiPageDisambiguates of | dbr:Fermi_(disambiguation) |
is dbo:wikiPageRedirects of | dbr:Fermi-Pasta-Ulam-Tsingou_experiment dbr:Fermi-Pasta-Ulam-Tsingou_problem dbr:Fermi-Pasta-Ulam-Tsingou_recurrence dbr:Fermi-Pasta-Ulam_problem dbr:Fermi–Pasta–Ulam_problem dbr:FPUT_problem dbr:FPU_problem dbr:Fermi-Pasta-Ulam_Experiment dbr:Fermi-Pasta-Ulam_experiment dbr:Fermi-Pasta-Ulam_recurrence dbr:Fermi–Pasta–Ulam_experiment dbr:Fermi–Pasta–Ulam_recurrence dbr:Fermi–Pasta–Ulam–Tsingou_experiment dbr:Fermi–Pasta–Ulam–Tsingou_recurrence |
is dbo:wikiPageWikiLink of | dbr:FPU dbr:John_Pasta dbr:Index_of_physics_articles_(F) dbr:List_of_important_publications_in_physics dbr:Timeline_of_computational_mathematics dbr:Mary_Tsingou dbr:Timeline_of_mathematics dbr:Equipartition_theorem dbr:Ergodic_hypothesis dbr:Stanislaw_Ulam dbr:Kummer_sum dbr:Timeline_of_scientific_computing dbr:Fermi-Pasta-Ulam-Tsingou_experiment dbr:Fermi-Pasta-Ulam-Tsingou_problem dbr:Fermi-Pasta-Ulam-Tsingou_recurrence dbr:Golden_age_of_physics dbr:Molecular_dynamics dbr:List_of_things_named_after_Enrico_Fermi dbr:Fermi-Pasta-Ulam_problem dbr:Fermi_(disambiguation) dbr:Fermi–Pasta–Ulam_problem dbr:FPUT_problem dbr:FPU_problem dbr:Korteweg–De_Vries_equation dbr:Newton's_laws_of_motion dbr:Soliton dbr:List_of_things_named_after_Stanislaw_Ulam dbr:Gibbs_paradox dbr:Resonant_interaction dbr:Fermi-Pasta-Ulam_Experiment dbr:Fermi-Pasta-Ulam_experiment dbr:Fermi-Pasta-Ulam_recurrence dbr:Fermi–Pasta–Ulam_experiment dbr:Fermi–Pasta–Ulam_recurrence dbr:Fermi–Pasta–Ulam–Tsingou_experiment dbr:Fermi–Pasta–Ulam–Tsingou_recurrence |
is dbp:knownFor of | dbr:Mary_Tsingou dbr:Stanislaw_Ulam |
is foaf:primaryTopic of | wikipedia-en:Fermi–Pasta–Ulam–Tsingou_problem |